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1. Introduction 

This paper will be devoted to a renewed study of two dimensional Yang- 
Mills theory without matter, a system which can be easily solved [ 1 ] and has 
been extensively studied [2-121. Yet we will see that there is still much to 
say about this supposedly “trivial” system. To state our result in a nutshell, 
we will explain (in section 3) a simple mapping from topological Yang-Mills 
theory to physical Yang-Mills theory in two dimensions - analogous to the 
far more mysterious equivalence of topological and physical gravity in two 
dimensions [ 13-151. 

What can be learned from this? To begin with the physics, as in the case of 
any gauge theory, one can attempt to expand the partition function Z (E ) of 
two dimensional Yang-Mills theory in powers of the gauge coupling constant 
E. In doing so (in a suitable topological sector), one finds a remarkable result: 
the perturbation series in E stops after finitely many terms, yet Z (E ) is not a 
polynomial. Z (E ) contains exponentially small terms which can be identified 
as contributions of unstable classical solutions to the functional integral. (A 
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solution with n unstable modes is weighted with a phase of i”; it turns out 
that n is always even.) Conventional physical methods are quite inadequate 
for explaining such behavior. It turns out that this can be done using the 
relation that we will find between physical and topological gauge theories or, 
differently put, using a generalization to problems with non-abelian symmetries 
of the exact integration formula of Duistermaat and Heckman [ 161. We will 
devote sections 2 and 3 to an explanation of the necessary ideas, first from a 
mathematical standpoint in section 2, and then more physically in section 3. 
The argument in section 2 uses an idea similar to that in a proof by Bismut 
[ 171 of the DH formula. In section 4, we will apply our integration formula 
to two dimensional gauge theories, explaining the peculiar properties of the 
function Z (E ). 

The usual Duistermaat-Heckman (DH) formula can be applied to prob- 
lems with non-abelian group action [ 181, and it may well be that in finite 
dimensions, most of the applications of our formula can be deduced from the 
DH formula. Even if this is so, the formulation we give is natural in infinite 
dimensions, as should be clear in sections 3 and 4. 

Mathematically, it has been known [ 10-l 21 that Z (E ) can be expressed at 
E = 0 in terms of the volumes of the moduli spaces of flat connections on 
a surface; this is essentially a consequence of old work by A. Schwarz [ 191 
and was used in ref. [ 1 I ] to obtain precise formulas for these volumes. Yet 
a study of the function Z (E ) has suggested that the relation of this function 
to the topology of the moduli spaces is not limited to E = 0. Coming to grips 
with this phenomenon is the goal of the present paper from a mathematical 
standpoint. This requires the non-abelian integration formulas of sections 
2 and 3 and their application to infinite dimensional functional integrals 
in sections 4 and 5. The upshot will be precise and general formulas for 
intersection pairings on moduli spaces of flat connection, which are presented 
in section 5. 

We now turn to a more extensive introduction to our subject. 

Integration formulas. The DH formula, which has many fascinating applica- 
tions, governs the following situation. #’ Let X be a 2n dimensional compact 
symplectic manifold, with symplectic form o. Suppose that the group U( 1) 
acts symplectically on X, the action being generated by a vector field V. The 
action is said to be Hamiltonian if there is a function H on X such that 

#’ For instance, an application of the DH formula that is important in matrix models of 
two dimensional gravity can be found in ref. [20]. My approach, many years ago, to the 
supersymmetric proof of the Atiyah-Singer index theorem was based on the DH formula; the 
ideas are explained in ref. [21]. There have been recent attempts to extend the application of 
the DH formula to path integrals [22]. 
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dH = -jr/w. #* The partition function of classical statistical mechanics, with 
this phase space and Hamiltonian, is 

J 
w” 
Tze 

-PH. (1.1) 
x 

The DH formula asserts that this integral is given exactly by the semi-classical 
approximation, provided that one sums over all critical points of H. If the 
critical points are isolated points Pi, then the formula is 

J 
0” -PH = c 

e-PH(P;) 
TFe 

X 
i /PeWi)’ (1.2) 

where e (Pi ) is the product of the weights of the circle action in the tangent 
space at Pi; this factor can be interpreted as the determinant arising from a 
Gaussian integral near Pi. [The sign of e (Pi ) is (- 1 )‘@, where ni, which is 
even because of the circle action, is the Morse index of Pi - as if each unstable 
mode contributes a factor of i to the integral.] 

The DH formula is usually stated for oscillatory integrals - imaginary /I 
- in which case (1.2) is the assertion of exactness of the stationary phase 
approximation (summed over critical points). In our applications, real /.I is 
more natural. A simple example of the application of the DH formula is given 
in the appendix. 

The DH formula has a cohomological interpretation [23], which shows that 
the basic principle is not stationary phase but localization at the fixed points 
of the U ( 1) action; in this form ( 1.2) can be generalized to a larger class of 
integrals. 

The non-abelian case. Suppose we are given the action on X not of U( 1) but of 
a compact, connected Lie group G, with Lie algebra 8. The action of G is said 
to be Hamiltonian if it is induced from a homomorphism jI : 9 --) Fun(X), 
where Fun(X) is the space of smooth functions on X, regarded as a Lie 
algebra via the Poisson bracket. This amounts to saying that for every element 
T, of 0, represented by a vector field V, on X, there is a corresponding 
Hamiltonian function ,uua, with Jo, (CO) = -dp=, and with the map T, -+ ,uua 
being a homomorphism. The pa can be assembled into a map ,u : X + 9* (9* 
is the dual of 4). 

In particular, we do not have a single G invariant function p, but a collection 
of them; so we must modify ( 1.1). To this end, we introduce an invariant 

x2 I will use the symbol jv to denote contraction with a vector field V, so in local coordinates 
xi, if w = dW;j dxi A dxj, then jvw = V’wijdxj. This operator is more usually written as 
ir/, but I want to avoid confusion with i = &i. For a one-form 1, I also write iv(A) as 
A(V). 
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quadratic form ( , ) on B and consider the integral 

Z= 
J 

$ exp[-~P@,p)l. (1.3) 
M . 

The critical point set of the function I = (,u,,u) that appears here is very 
special, since according to Atiyah and Bott [24] and Kirwan [25], I is an 
equivariantly perfect Morse function. In this paper, we will use the critical 
points of this function in another way. We will see that there is an analog of 
the DH formula expressing Z as a sum of contributions of critical points of I. 
The general statement is of the following form. Let S be the set of components 
of the critical point set of I. For every component X, of the critical point set, 
there is a function Z, (p), determined by the local behavior of w and ,u near 
X, up to some finite order, such that 

Z(P) = pLcp,. (1.4) 
aES 

The 2, (p ) can be very complicated functions of p. Transcendental functions 
such as the error function arise even in the simple abelian example treated in 
the appendix. 

However, a simple contribution arises in one important special case, which 
will be the basis for our applications. The absolute minimum of I, which will 
give the dominant contribution in the important limit of p + 00, is p-l (0). 
The quotient M = ,c’ (0)/G is called the reduced phase space or symplectic 
quotient of X by G. ,u”-’ (0)/G is naturally a symplectic manifold wit+ a 
symplectic form that we will also call o. If p-’ (0) is a smooth manifold, on 
which G acts freely, then the contribution of p-’ (0) to Z is given by a simple 
cohomological formula that we will explain, essentially 

j&+xP(~+&$ 
M 

(1.5) 

where 8 is a certain element of H4(M,R) that will appear in due course. 
Thus, Z differs from (1.5) only by terms that vanish exponentially for J? -+ 00. 

Formula ( 1.5) is analogous to a cohomological formula of DH for the 
pushforward of on/n! by the moment map. Like the DH formula, our formula 
for Z comes from a localization principle which applies to a larger class of 
integrals; in fact we will need the generalization. 

Application to gauge theories. Now let us describe the infinite dimensional 
setting in which we will apply these considerations. 

Let H be a compact, connected (but perhaps not simply connected) Lie 
group with Lie algebra X. We will assume H is simple. The extension to more 
general compact H does not involve essentially new ideas. 
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For H = SU (IV), introduce a quadratic form ( , ) on 7f by 

(a,b) = -Trab, (1.6) 

where Tr is the trace in the N dimensional representation. This has the 
property that the fundamental integer valued characteristic number of a rank 
N vector bundle E with structure group SU(N) on a closed four-manifold X 
is 

-& TrFAF, 
s 
x 

(1.7) 

where F is the curvature of a connection on E. (This integrality insures 
integrality of the symplectic form introduced presently.) For any simple con- 
nected H, we define - Tr to be a positive definite quadratic form on ti such 
that (1.7) is the fundamental characteristic number of an a bundle over a 
four-manifold, R being the universal cover of H. 

Let C be an oriented closed Riemann surface of genus g. Let E be an 
H bundle over C (one can think in terms of a principal bundle or a vector 
bundle with a reduction of the structure group to H). The adjoint vector bundle 
associated with E will be called ad(E). Let A be the space of connections on 
E. The space of connections is an aftine space whose tangent space can be 
identified with 52 1 (C, ad (E ) ) (that is, the space of ad(E)-valued one-forms 
on X). This being so, a symplectic form on A can be defined by 

o(u,b) = &./Tr(aAb). 
b 

Let G be the group of gauge transformations on E. The Lie algebra B of G 
is the space of ad(E)-valued zero-forms; the dual of the Lie algebra consists 
of ad(E)-valued two-forms. G acts symplectically on A, with a moment map 
given [24] by the map 

P(A) = --&> (1.9) 

from the connection A to its ad (E&valued curvature two-form F = dA + A AA. 
,c’ (0) therefore consists of flat connections, and p-r (0)/G is the mod- 

uli space M of flat connections on E up to gauge transformation. M is a 
component of the moduli space of homomorphisms p : ~1 (C) + H, up to 
conjugation. 

Endow 1 with a measure ,u of total area 1. This determines a metric or 
quadratic form (a, a) = - JZ dp Tr a* on 8; hence it determines on the dual 
of B a quadratic form which we can write as (F, F) = - Jz dp Trf2 where 
f = *F. (Here -k is the Hodge star operator; we recall that in two dimensions 
the * operator between two-forms and zero-forms depends only on a measure, 
not a metric.) The partition function of two dimensional quantum Yang-Mills 
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theory on the surface C is formally given by the Feynman path integral 

Z(E) = & JDA ev(-&U’jF)), (1.10) 
A 

where e is a real constant, DA is the symplectic measure on the infinite 
dimensional function space A, and vol(G) is the volume of G (determined 
formally from the volume form on G associated with the metric on Q). 

Local considerations due to Migdal [l] can be adapted in various ways 
[3-l 21 to give a rather direct computation of ( 1.10) (and various closely 
related integrals). On the other hand, since (F, F) is the norm of the moment 
map with respect to an invariant metric on the Lie algebra, the integral ( 1.10) 
is precisely of the form of the integrals (1.3) governed by the new localization 
principle that we will present. Comparing the known Z(E) to predictions of 
the localization principle, we will find full agreement for all properties that 
can be computed on both sides, including some surprising properties of Z (E ) 
that we mentioned at the outset. 

The cohomology ring of the moduli space. Mathematically, the payoff comes 
by looking closely at the contribution of p(-’ (0) to the critical point formula 
( 1.4). This contribution can be extracted from the small-r behavior of Z (E ); 
on the other hand, it has an interpretation in terms of the topology of M that 
emerges in the proof of the critical point formula. Comparing these will give 
our main topological conclusions. 

The contribution of p-* (0) to (1.4) will turn out to have a simple co- 
homological interpretation when the gauge group and bundle are such that 
p-l (0) is non-singular, and acted on freely by G. In practice, this occurs in 
genus > 1 for H = SU( N)/r, with J-’ a subgroup of the center of SU (N), 
and certain bundles E. In the rest of this introduction, we consider only such 
cases. However, even when there are singularities, the fixed point theorem 
gives in principle a more sophisticated formula, deserving of study, for the 
contribution of pL-* (0). 

Explicit generators Xi for H* (M,R) are known [26,24]. We will recall their 
definition in section 3.3. By comparing the direct evaluation of Z (E ) to the 
predictions of the critical point formula, we will obtain in the non-singular 
case explicit expressions for all of the quantities 

J Xl AX2 A.*, AX”. (1.11) 
M 

This is tantamount to a determination of the cohomology ring of M. 
The intersection numbers ( 1.11) have been the subject of recent papers [ 27- 

29] giving a complete answer for H = SO(3) and E a bundle of non-zero ~2. 
Here is a brief synopsis of the methods and comparison to the approach here. 
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Thaddeus [ 271 uses the Verlinde formula of conformal field theory [ 30-351. 
Since not all the Xi appear in the Verlinde formula, Thaddeus supplements 
this with a geometrical argument to eliminate the extra classes in the case of 
SO( 3). The analogous step in our calculation is the integration over v and 
change of variables to reduce (5.11) to (5.14), thereby eliminating (for any 
H) those Xi that do not appear in the Verlinde formula. It would be interesting 
to know how Thaddeus’s geometrical argument could be extended to other H. 
As for the main part of Thaddeus’s paper, which is the use of the Verlinde 
formula, the analog of this in the present paper is the explicit evaluation 
of the Yang-Mills path integral (5.14) by a gluing method. The origins of 
the Verlinde formula (and most approaches to proving it, though [ 331 is an 
exception) involve analogous but more sophisticated gluing arguments. 

Kirwan [28] uses considerations involving the geometry of the space of 
connections starting with the fact that I is an equivariantly perfect Morse 
function. She proves for SO( 3) (i.e., rank two bundles of odd degree) the 
completeness of the Mumford relations among products of the Xi; modulo a 
knowledge of the volumes of the moduli spaces, this is equivalent to evaluation 
of ( 1.11). Her considerations, which in principle apply for any H, probably 
underlie our non-abelian localization formula. 

Donaldson [ 291 uses a topological gluing construction ingeniously extracted 
from work on the Verlinde formula. This makes it possible to evaluate the 
pairings ( 1.11) by pure differential topology. 

2. Non-abelian localization 

2.1. EQUIVARIANT INTEGRATION 

In this section, I will explain the non-abelian localization principle. 
Let X be a compact closed manifold acted on by a compact connected Lie 

group G, with Lie algebra G. 
We must recall the de Rham model for the G-equivariant cohomology of 

X (see refs. [ 231, pp. 10-l 3 and [ 361 for explanations), which we will 
take with complex coefficients. Let sZ* (X) be the de Rham complex of X. 
Let Fun (0) be the algebra of polynomial functions on S, graded so that an 
nth order homogeneous polynomial is considered to be of degree 2n. We 
will later consider various completions of Fun (E ). The desired complex is 
Q;(X) = (Q*(X) @Fun(Q))G, where G denotes the G-invariant part. (For a 
description of the same thing in the notation of physicists, see the beginning 
of section 3.) An element of this complex is called an equivariant differential 
form. 

The G action on X is determined by a homomorphism from S to the Lie 
algebra Vect(X) of vector fields on X. Let us denote the vector field on X 
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corresponding to C$ 6 B as V(4). One endows Sz; (X) with the differential#3 
D = d - ijv(@,. (2.1) 

We have 
D* = -i&(4), (2.2) 

with CV(~) = dh, + jvw d the Lie derivative with respect to V,. Thus, 
D2 = 0 precisely on the G-invariant subspace QG (X) of Q* (X) @ Fun (62). 
The cohomology of the D operator is called the G-equivariant cohomology of 

Now we want to introduce a notion of integration of equivariant differential 
forms. The operation usually considered is the pushforward S2; (X) --) a; (pt) 
obtained by integration over X: 

cl--, o!. J (2.3) 
X 

To show that this descends to a map II; (X) + If: (pt), one must show that 
one can integrate by parts: 

0 = J D/l. (2.4) 
X 

This is true since Jx d/I = 0 by ordinary integration by parts, and Jx jv(## = 
0 since jv(b)p does not have a component which is a differential form of top 
dimension. 

This, however, is not quite the integration operation that we want. As a 
vector space, g has a natural translation invariant measure, unique up to ‘a 
constant factor. To fix that factor, note that, as B is naturally isomorphic to the 
tangent space to G at the identity, a choice of Haar measure on G determines 
a measure on 9. Picking an arbitrary Haar measure on G, with total volume 
vol(G), let q4,h.. . , 4S be Euclidean coordinates on B such that the measure 
d&W2 . . . d4S on E coincides with the chosen Haar measure at the identity of 
G. Then 

(2.5) 

is a natural measure on 9, independent of the chosen Haar measure on G. 
The integration operation that we want is now roughly speaking the map 

L2; (X) + C given by 

(2.6) 

*3 The factor of i = fl in the last term here is usually omitted in mathematical papers, and 
plays no essential role, since it can be removed by conjugation. I include it so that later 
formulas will agree with standard physics conventions, 



E. W&en / Two ditnensional gauge theories revisited 311 

This definition is, however, unsatisfactory as the integral does not generally 
converge. If we complete Fun(G) to permit functions that are not necessarily 
polynomials in 4, then (2.6) converges for a suitable class of 0’s. Since we 
want to allow a somewhat larger class, we introduce a convergence factor in the 
definition. Let E be a positive real number. Let ( , ) be the positive definite 
invariant quadratic form on Q described in the introduction. The definition 
that we want is then 

f 

1 a=vol(G) J Wl “‘dd+ aexp[-+(4,4)]. 
(27cP 

(2.7) 
BXX 

This of course converges for forms with polynomial dependence on 4. Later, 
we will work not just with polynomial forms but with forms that are permitted 
to have an exponential growth for large 4; (2.7) also converges in this larger 
class. We will call the operation in (2.7) equivariant integration. 

The same argument as above shows that $ Dp = 0 for any /3, so # descends 
to a map from Hz(X) to @. In fact, this map is just the composition of 
ordinary integration over X with the map H; (pt) + @ given by 

1 
I’ + vol(G) J dhdh...Ws y 

(27r)S * (2.8) 

By mapping from H$(pt) to @ we have, in a sense, discarded most of the 
information. The discarded information can be recovered by considering not 
just $ QI but also $ Q . Q (4) with Q an arbitrary G-invariant polynomial on 6 
[that is, an arbitrary element of Szz (pt)]. Happily, the localization principle 
to which we presently turn applies to all of these integrals. 

2.1.1. G action on a point. In general, the # operation diverges as E ---) 0. For 
instance, in the basic case X = a point, CY = 1, we have 

f 
l= 

1 
vol(G) (27r~)~/~’ (2.9) 

Pt 

This is an important formula which is the simplest illustration of the relation 
of singularities of the G action to singularities of equivariant integrals as 
functions of e. 

2.2. THE LOCALIZATION PRINCIPLE 

Now we will explain the localization principle. Let (Y be any equivariantly 
closed form. Then for any real number t and any A E Szc (X) whose dependence 
on 4 is sufficiently mild, 

f f 
ff= Q etDa, (2.10) 

X X 
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since (Y (1 - efDL) can be written as D (+. a) using Da = D2 = 0. A restriction 
on the C$ dependence of ,l must be imposed here to ensure the convergence 
of the right hand side of (2.10) and to justify the integration by parts that is 
involved in proving (2.10 ). We will consider only the case that 1 is independent 
of 4. In fact, we will suppose that 1 is a G-invariant one-form. 

Pick an orthonormal basis T, of G, and write V (4) = C, $” V,, where V, 
is the vector field on M representing T,, and the C#J” are linear functions on 
9. Then (2.10) can be written out explicitly as 

f 

1 
cr=vol(G) I 

W 1 W2 . . . d4s 
(277P 

aexp t&- ilC$“A(V,) - 4~ C(&“)2 
X II a ._ 

(2.11) 
If we suppose that CY is independent of 4, then we can perform the Gaussian 
4 integral to get 

f 

1 
ff = vol(G) (27c~)~/~ 

(2.12) 

X 

The crucial factor in (2.12) is the last exponential factor. Let X’ be the 
subspace of X on which 

Write 

RI(&) = 0, a = l,..., S. (2.13) 

X’ = u x,, (2.14) 
UES 

where X,, are the connected components of X’, and S is the set of such 
components. Let W be a compact subset of X with W n X’ = 0. We know 
that (2.12) is independent of t. On the other hand, the integral over W of the 
right hand side of (2.12) vanishes for t + 00 as exp(-ct2) for some positive 
constant c. Let Z, be the integral of the right hand side of (2.12) over a 
tubular neighborhood of X0, in the limit t --) 00. Z, is determined by the local 
behavior of cr and the G action near X, up to some finite order. (In the case 
that Z, is a point, this is a consequence of theorem 7.6 of ref. [37].) And 
taking the large-t limit of (2.12), we get an expression 

h=z 
ZCJ (2.15) 

X 

for jx CY as a sum of local contributions. 
So far we have assumed that (Y is independent of C#J. It would not be different 

if (Y has a polynomial or even exponential dependence on 4. The 4 integral in 
(2.11) would then contribute an extra polynomial or exponential t dependence 
on the right hand side of (2.12), too weak to affect the localization, which 
was determined by a factor exp( -ct2). The detailed computation of Z,, in the 
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case that cr has exponential 4 dependence requires care and will be considered 
later in a special situation. 

2.2.1. Stationary phase. The argument leading to localization can actually be 
formulated without performing the 4 integral. Looking back to (2.11), we see 
that apart from a polynomial in t that comes from the expansion of exp (t dA), 
the t dependence appears entirely in a factor exp(-itK), where K is the 
function 

K = ~4fwK) (2.16) 
a 

on X x 6. The method of stationary phase (expounded, for instance, in ref. 
[37], ch. 7) enables one to compute the large-t behavior of such an integral 
in terms of local data on the critical point set of K. (The convergence factor 
exp [ -$c (d,~$) ] in our integral ensures that there are no essential problems 
coming from the lack of compactness of X x S and the possible lack of 
compactness of the critical point set.) 

The critical point condition dK = 0 gives two conditions. Varying with 
respect to 4, we get the familiar equation 

A(&) = 0, a = l)...) s. 

Varying with respect to the coordinates of X, we get 

(2.17) 

qb” d (A(v,)) = 0. (2.18) 

The @ take values in a vector space which is contractible to the origin by 
scaling; and the equations are invariant under this scaling. So the homotopy 
type of the space of solutions would not be changed if we restrict to 4 = 0, 
and in particular the components ,& of the critical set of K are in one 
to one correspondence with the components X0 of solutions of (2.17). The 
contribution of z0 to the large-t evaluation of (2.11) coincides with the 
contribution of X, to the large-t evaluation of (2.12), since it reduces to the 
latter upon performing the C$ integral. 

Because of the invariance under scaling of 4, & is compact when and only 
when i0 = A’,; this is so precisely when (2.18) implies that c#P = 0. When this 
is so, compactness of x0 means that the convergence factor exp [ - 46 (c$,cJ~) ] 
is not needed to make sense of the stationary phase integration; and therefore 
the contribution 2, of & to the integral has a limit as E + 0. In fact, general 
principles of stationary phase integration assert that Z, depends only on the 
behavior of the integrand in (2.11) up to finite order near the critical locus 
%, and so when x, is supported at @ = 0, Z, is a polynomial in e. 

In case G acts freely on X,, one can make this much more explicit. Under 
this condition, H;; (X, ) is naturally isomorphic to H* (X,/G). Let Y be an 
equivariant tubular neighborhood of X, in X x 8. Y is equivariantly con- 
tractible to X,, so H;(Y) 2 H;(X,) 2 H*(X,,/G). If rr : Y + X,/G is 
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the composite of an equivariant retraction Y + X, and the natural projec- 
tion X, + X,/G, then the natural isomorphism of H* (X,/G) with Hz(Y) 
is simply the pullback rr* : H*(X,/G) -, H; (Y). In particular, the element 
-($,c#J)/~ E Hz(X), when restricted to Y, is n*(8) for some Q E H4(XO/G). 
[In fact, 8 is a characteristic class of pL-l (0), regarded as a principal G bundle 
over b”-’ (0)/G.] At the level of equivariant forms, 

-&G#4 = x8(@) + Dw, (2.19) 

for some w E Q:(Y) and 8 E .Q4(X,/G). 
The fact that X0 = X, means that the contribution of X, to ICY can be 

evaluated by stationary phase evaluation of the integral 

1 
I 

dhdh..-dA 
vol(G) (2aP 

tcU-itC~l(~~)-)EC(~~)Z .u, 
a a 

(2.20) 
where u is a smooth G-invariant function that is 1 in an equivariant neigh- 
borhood of X0 and zero outside Y. In using (2.19 ), one can integrate by parts 
and discard the du term, since there are no critical points of K where du f 0. 
So in evaluating the contribution 2, of X,, we can make the substitution 

exp [-+ (hdl] + exp(c@ 1. (2.21) 

Among other things, this makes it clear that 2, is a polynomial in E of order 
at most adim(X,/G). 

Moreover, the isomorphism H;(Y) E H* (X,/G) means that any Q: $ 
Hz (X) that we may be trying to integrate, when restricted to a neighborhood 
of X,, is the pullback of some cr’ E H* (X,/G). So we can make the substitution 

CK + CY’ (2.22) 

in the integral. We will later find an important situation to which these 
considerations apply. 

2.2.2. Derivation of the DH formula. For clarity, we will now recall [ 171 how 
to obtain the DH formula in a similar fashion. So we assume G = U ( 1). The 
differential in the de Rham model of HE (X) is now D = d - i$jv, where I’ 
is a vector field generating the G action, and 4 is a linear function on the one 
dimensional Lie algebra of G. We “localize” algebraically by setting 4 = i. An 
equivariant form is then simply a differential form CK obeying (d + ~V)CY = 0. 
By integration of such a form we simply mean integration over X in the usual 
sense. 

We have 

I I 
CX= aexp(tDR.), (2.23) 

x X 
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for any G-invariant A. To pick a suitable 2, let g be a G-invariant Riemannian 
metric on X, and let I be the one-form A = -g( I’,.). Then (2.23) amounts 
to 

J J 
ff = rrexp[-t d3, - tg(V, V)]. (2.24) 

x X 

So taking t + 00, we get a localization at the zeros of g( V, I’) or, in other 
words, at the zeros of V. At an isolated zero P of I’, the Hessian of g (V, V) is 
non-degenerate, so the large-t limit can be evaluated by Gaussian integration. 
In this way, one gets the contribution of P to the generalized DH formula of 
ref. [23], eq. (3.8). 

2.3. THE SYMPLECTIC CASE 

We now want to elucidate the meaning of the localization formula (2.13) 
in the following important case. We suppose that X is a symplectic manifold, 
with symplectic form o, and that the G action on X has a moment map p. 
We pick on X an almost complex structure J such that o is of type ( 1,l) 
and positive. Positivity means that the metric g (., .) defined by 

g(u,v) = a(~, Jv) (2.25) 

is positive definite. Such a J always exists (and is unique up to homotopy) 
because the Siegel upper half-plane is contractible. Set I = (p,~) and 

il = ;J(dZ). (2.26) 

(SO in components, I = i J’jdil dx’.) 
Obviously, at the critical points of I, 1 = 0 and hence A ( V,) = 0. We want to 

prove the converse. Let Y = C, p0 V,. The moment equation dpO = -jr, (0) 
implies that Y = $o-’ dl, where 0-t [which in components is the inverse 
matrix to o, so (~-‘)~~~kj = Sj] is regarded as a map T*X ---t TX. A(V,) = 0 
implies n(Y) = 0 or 

co-l (dl, Jdl) = 0. (2.27) 

Positivity of (2.25) means that (2.27) holds only for dl = 0. Thus, in the 
case of symplectic manifolds, with our choice of 1, the localization principle 
is a reduction to the critical points of I = (~1, p). 

2.3.1. G action on T’G. We now consider the basic case of X = T*G, with 
the natural symplectic structure on T*G and the G action on T*G induced 
from the right action on G. The localization will be on G c T*G. As T*G is 
not compact, we must define the $ operation by the right hand side of (2.12), 
insisting on t f: 0. It is really the local behavior near G c T’G that matters, 
and the importance of the calculation is that it can be applied whenever the 
critical point set of Z has a component that can be modeled on G c T*G. 
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By going to a basis of right invariant one-forms, T’G can be identified with 
G x G. In terms of g x y E G x 6, the symplectic form can be written 

o = W&T’) + (y&x-‘dgg-’ 1 

= (dy + ;b,dgg-‘l&W’I. (2.28) 

The vector field V associated with a E G can be described by the formulas 

6g = -ga, 6y = 0. (2.29) 

A small computation gives jv (0) = d(y, gag-’ ), so the moment map is 
,~(a) = -(y, gag-’ ). The square of the moment map I = (p, ,u) is therefore 
I = (y, JJ). An almost complex structure on 7’*G can be defined by the 
formulas J(0) = 9, J(q) = -0, with 

6 = dy + ~b,k?l, q = dgg-? (2.30) 

It is evident from the second description of o in (2.28) that w is positive and 
of type (1,l). One now computes that ,l = fJ(d1) is 

A = b&X--‘). (2.31) 

G acts freely on T’G; the quotient can be identified with 0 via the projec- 
tion G x E + LI. So the equivariant cohomology of T*G coincides with the 
ordinary cohomology of G, and vanishes except in dimension zero, where it is 
represented by the constants. The only integral that we really have to consider 
is therefore &.c 1. This is 

1=1 
J 

d4l . . . d& 
vol(G) (2nP 

J ew [tDd - $6 ($,4)] . (2.32) 
T’G T’G 

Since the integral is independent of t for t f 0, we can set t = 1. Working 
out the top form component of D;I explicitly, and changing variables from C$ 
to g-‘4g, we get 

f 
1 

’ = vol(G) J 
d$t . ..d$s 

(2nP 
J exp [-i(v,d) - fe(f$,$)] (dy’dt,g-‘)“. 

T-G T-G 
(2.33) 

[Note that o” coincides with (dy, dgg- ’ )“.I The y integral can be done using 
M 

J du e-iuu = 2719(w). (2.34) 
-co 

The 4 integral can then be done using the delta functions. Notice that the E 
dependence disappears at this point [a consequence of (2.21) 1. The integral 
over g cancels the factor of vol( G). Assuming that the orientation of T*G 
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is chosen to agree with the one determined by the symplectic structure, the 
result is just 

f 
1 = 1. (2.35) 

T*G 
That this is independent of E is a consequence of the fact that for X = T’G, 

(2.18 ) implies 4 = 0 [this is shown more generally in (2.45 ) below]. Hence 
we could alternatively have proceeded as follows: set E to zero in (2.33); 
evaluate the C$ integral using (2.34); evaluate the y integral using the resulting 
delta functions. 

2.3.2. G action on T* (G/H). We will now briefly describe the extension of this 
to the case that X = T’ (G/H), with H a subgroup of G of dimension Y and 
Lie algebra 7-1 c G, and with the natural symplectic structure on T’ (G/H). #4 
The restriction of ( , ) to 3-1 is an invariant quadratic form on 7-& which 
we will denote by the same symbol. We have already carried out equivariant 
integration over T*(G/H) for H = G and H = (1) in (2.9) and (2.35), 
respectively. The general case turns out to be a natural combination of these. 

T* (G/H) can be parametrized by pairs g x y E G x G, with an equivalence 
relation g x y 2 hg x hyh-’ for h E H, and a constraint (y, b) = 0, for b E H. 
The symplectic structure and the G action can still be described by (2.28) and 
(2.29). The moment map for a E &I is still p = -(y, gag-‘), and its square 
is still I = (I(,P) = (7,~). 

Let bi be an orthonormal basis of ‘H, let II be the orthogonal projection 
onto the complement XHI of X, and introduce the ‘HI-valued one-forms 

0 = n dY + ~[Y,dgg-‘l + fC[Y,bil(bi,dgg-‘) 
I 

q = I7 (dgg-‘). (2.36) 

An almost complex structure J such that o is positive and of type ( I,1 ) can 
be defined as before by the formulas J (0 ) = q, J (q) = 4. 

Now we introduce the usual G-invariant one-form 

A = ;Jd$ = ;Jd(y,y) = (Y,dgg-‘). (2.37) 

so 
DA = (dy, dgg-’ 1 + (y, dgg-‘dgg-’ 1 + it)), gW’ 1. (2.38) 

Let Q be an arbitrary element of H;(T* (G/H)). Since T* (G/H) has an 
equivariant retraction to G/H, we can represent cv by the pullback of an 

*’ This case is generally less important in our applications, but will arise when we consider gauge 
theory in genus zero. 



318 E. Witten / Two dimensional gauge theories revisited 

element of Q; (G/H), which we will also call CL We want to compute 

f 

1 
a=iTgc) J 

d41. . . Ws 
(2n)S J aexp [tDA - $ W#d] . (2.39) 

T’ (G/H) T’(G/H) 

Using (2.38), setting t to I, extracting the top form component, and replacing 
4 by g-*4g, this is 

T*(@H) 
(2.40) 

(Y, being a pullback from G/H, is independent of y. If, therefore, we write 
~=~‘+~~,with~~‘Hand~~~‘FI 1, then the y integral gives (27~)‘8’(4~), 
with the aid of which the 41 integral can be done. It remains to integrate over 
4’ and g. 

Restricted to a given point in G/H, say the coset of 1 E G, (Y reduces to an 
H-invariant polynomial (Y’ (# ). [The map QI + CX’ is a bijection in cohomology 
and is the natural isomorphism Hz (G/H) E HI; (pt). ] The $’ integral gives 
a factor 

J (2.41) 

The g integral gives a factor of vol(G/H) = vol(G)/vol(H). [The volumes 
are computed using the measures on G, H, G/H induced from the quadratic 
form ( , ) on G and X.1 Combining the pieces, and assuming that T’ (G]H) 
is given the orientation compatible with its symplectic structure, we get 

f 

1 a=zi(F) J (2.42) 
T’ (G/W 

which shows that G-equivariant integration on T’ (G/H) reduces to H- 
equivariant integration on a point. 

2.4. MORE ON THE SYMPLECTIC CASE 

We now want to make a more intensive study of equivariant integration 
on a symplectic manifold X with symplectic form w. We have seen that this 
reduces to a sum over critical points of the function I = (,B, p). The absolute 
minimum of that function is p-i (0). Assume first that ,L-’ (0) is a smooth 
manifold, on which G acts freely, so that the quotient M = pL-’ (0)/G is a 
smooth manifold with a naturally induced symplectic structure, which we will 
also call 0. 
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We want to compute the contribution of p-r (0) to 

f 
1 

a=VOI(G) J dh . . . d& 
(2nP 

Jaexp [tD1- +(4,$)]. (2.43) 
X X 

This reason that this is simple is that we can use (2.2 1) and (2.22). We recall 
that the criteria for the validity of (2.2 1) were that G should act freely on the 
critical point set, and that 

x4“ d(J(V,)) = 0 
a 

(2.44) 

should imply @ = 0. A small computation shows A( V,) = & g (V,, V,)pu,, 
where b runs over an orthonormal basis of Q, and g(., .) is the metric (2.25), 
which is positive definite by the choice of LJ. Wherever G acts freely, the V, 
are linearly independent, and g ( Va, Vb ) is therefore a positive definite metric 
on Q (but not necessarily G-invariant, of course, as we are not at a fixed point 
of G). At p = 0, (2.44) reduces to 

(2.45) 
a b 

Since g (V,, vb) is invertible, and the d,ub are linearly independent wherever 
G acts freely (since dpb = -j,o), the coefficients of the @ in (2.45) are 
linearly independent on p-’ (O), and hence also in a neighborhood thereof. 
So, as desired, (2.44) implies @ = 0, and we can use (2.21) and (2.22). 

Thus, let Y be an equivariant tubular neighborhood of p-t (0). Pick 
an equivariant retraction Y + p -I (0). Composing this with the natural 
projection w : Jo-’ (0) + p- ‘(0)/G, one gets an equivariant projection 
n : Y ---) p-t (0)/G. The elements - (4, 4) /2 and CY of Q(Y) are the pullbacks 
by a of some classes 8, (Y’ in H*(p-‘(0)/G). Formulas (2.21) and (2.22) 
mean that in evaluating the contribution Z(p-’ (0)) of pL-* (0) to jx Q, we 
can write 

z(~-I(o)) = --L vol(G) J d’;;ii?s Jajexp (tD2 + co). (2.46) 
Y 

To study this integral, first integrate over the fibers of n. Everything in (2.46) 
is a pullback via K except exp (tDL). Hence we must evaluate 

J dh . . . Ws 
(2nP J exp (DA), 

Ir-‘(pt) 

(2.47) 

Now, z-r (pt) is fibered over G E v/-r (pt), and the G action on rc-* (pt) can 
be modeled on a neighborhood of G c T*G (if Y and rr are constructed as 
explained in ref. [ 381, theorem 39.2 and proposition 40.1). Hence, the large-t 
limit of (2.47) is 1, using (2.35 ). For instance, one can do the calculation as in 
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the comment after (2.35), integrating first over $J in (2.47) to produce a delta 
function supported on ,u-’ (0). So integrating over the fibers of p”-’ (0) + 
,u-‘(0)/G, we get the very simple result 

Z(p-‘(OH = 
I 

a’exp(e@). 

P-’ (0)/G 

This formula is a major ingredient in our applications. 

(2.48) 

2.4.1. Higher critical points. We also want to say something about the con- 
tributions of the higher critical points of I in equivariant integration over 
X. At this point, we must specify what sort of equivariant forms we wish 
to integrate. Whenever one has a Hamiltonian group action on a symplectic 
manifold, a basic equivariant differential form, exploited in ref. [23], is the 
form of degree two ?!S = w - i C, da.ua. It can be regarded as an equivariant 
extension of o. For Q we will take 

a = exp @) . p, (2.49) 

where we will require that /3 has only a polynomial dependence on 4. This 
means that the integrals we wish to calculate are of the general type (setting 
p = 1 for simplicity) 

f 

1 
a=vol(G) I 

ddl ..-d$s 
2aS ew O-iC$‘Pa- +(A41 (2.50) 

a 

After performing the 4 integral, this is 

f 
1 

Q = vol(G) (~RE)s/~ I 
2 exp (-I/26 ) , 

. 
x 

(2.51) 

with I = (p,~). We note that, apart from some elementary factors, this is the 
integral (1.3) discussed in the introduction. 

Let X, be a component of the critical set, and Y an equivariant tubular 
neighborhood of X,. We want to estimate, for small E, the contribution 
Z (X, ) of X, to (2.5 1) (and its generalization with p f 1). In doing so we 
will assume that X0 is a nondegenerate critical locus in the extended sense of 
Bott - that it is a smooth manifold and that the Hessian of I is invertible in 
the directions normal to X0. Naively, one would expect that, if there is any 
sort of representation of (2.51) as a sum over critical points, the contribution 
of X, for small E should be of order 

ZLL) -ew[--~M,)/2~1, (2.52) 

[where I (X, ) is the constant value of I on X0 ] up to a power of E. This is so; 
we will see how this behavior emerges from the general localization procedure. 
To begin with, we consider the case /3 = 1. 
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2 (X, ) is the large-t limit of 

J Wt . . . d& 
(2nP 

x J ( exp 0 + t ti-iC&[p, + tA(b)l - +(4,4) . 
Y a ) 

(2.53) 
Upon performing the Gaussian integral over 4, this becomes 

1 
(27rEp/2 J ( exp w+tdA-&IV 

> 
, 

Y 

(2.54) 

where 
2 

w = cb.42 + ~wi)12 = c pa + tCg(V,, Vj)& . (2.55) 
a a b 

Restricted to the critical component X,, of I = (p, p ), W is equal to the 
Constant 1 (x,,), since cb g ( va, vb)pb = 0 On Critical points. we Will show 
momentarily that for t >> 0, X, is a local minimum of W (even though it 
may be an unstable critical set of I), and that the Hessian in the normal 
directions is positive definite and of order t. The integral in (2.54) is sharply 
peaked around this minimum, so the large-t behavior of (2.54) is determined 
by local behavior near the X,. M The large-t limit of (2.54) therefore vanishes 
exponentially for E --) 0 as exp[-W(X,)/2e] = exp[-Z(X,)/2e]. This is 
the exponential behavior suggested intuitively in (2.52). The same exponential 
would arise if we consider not $ exp(ZZ), but $ exp(ZJ) . j?, with B an arbitrary 
equivariant form with a polynomial dependence on 4. The introduction of /I 
would not modify the exponential factor in (2.54); it would merely produce 
a prefactor behaving for small E as E-” for some n. 

It remains to show that for large enough t, X0 is a local minimum of W, 
with a Hessian of order t. Let p = C, Vapa = 0.1~‘dI/2. We can write 

w = I + W’ + W” (2.56) 

with 
W’ = 2tg(F, F,, W” = tZC[g(V,, P)12. (2.57) 

a 

*’ But a Gaussian approximation to the integral near X0 is generally not valid, because the 
t2W” term vanishes up to fourth order yet - because of the tZ factor - cannot be ignored. For 
instance, the example treated in the appendix gives a two dimensional integral that is roughly 
J&T, cLq exp [-t(xf + xs) - t2(xf + .Y:)~], where Xi are local coordinates centered at one 
of the critical points. Thi; integral cannot be approximated for large t by a Gaussian, and 
instead is easily seen to give the error function found in the appendix. The terms proportional 
to t and f2 correspond to W’ and W”. 



t

At a critical point of I, P = 0, so such a point is also a critical point of W’ 
and W”. W’ and W” are positive semi-definite and vanish precisely at critical 
points of I. 

At a critical point of I, the Hessian or matrix of second derivatives 
E121/axii3xj may not be positive definite. However, it is dominated for 
t + +oo by the Hessian of W’, which turns out to be 

$W’ t a2r .=-- 
a,eaXJ 2 axiaxk 

g”’ 8’1 
ax/ad (2.58) 

and in particular is positive semi-definite [here g”’ are the matrix elements 
of the inverse of the metric g(., .) 1. As critical points of I are certainly local 
minima of W”, this suffices to show that the Hessian of W is positive semi- 
definite (and proportional to t for large t ) and that its kernel consists at 
most of the kernel of the Hessian of I. Since we have assumed that X, is a 
non-degenerate critical locus of I (in the sense that the Hessian is invertible 
in the normal directions), X, is a local minimum of W. 

3. Rederivation in quantum field theory language 

In this section, I will rederive some of the main results of the last section, 
using this time the language of quantum field theory. To begin with, I want to 
describe the non-abelian localization principle using more physical language, 
running through the relevant portions of section 2 more quickly with the 
notation of physicists. 

Notation is generally as in section 2. In particular, X is once again a compact 
manifold acted on by a compact Lie group G, with Lie algebra E; the G action 
on M is generated by vector fields V,. 

We let xi be local coordinates on M, and let cy’ be anticommuting variables 
tangent to M. Let @ be bosonic variables in the adjoint representation of 
G. Equivariant differential forms [elements of Q;(X) ] are just G-invariant 
functions of x, w, 4. Let 

This operator obeys D2 = 0 when acting on G-invariant functions of x, v, 4. D 
is the standard differential in Sz; (X), written in physical notation. Integration 
of an equivariant differential form Q: is defined by 

f 
a = ~JdxidyliJd~;;a.)~~‘aexp [-$e(4,$)]. (3.2) 

X G 
Note that, although there is no natural measure for the x’s or y/s separately, 
there is a natural measure dx’dy/‘, since the Jacobian in a change of variables 
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on M would cancel between bosons and fermions. (Integration with respect 
to this measure is what mathematicians call integration of differential forms.) 
As in section 2, d& .. . d+S is an arbitrary measure on 9, and (identifying the 
tangent spaces of G with 0) the same measure is used in computing vol( G). 
Obviously, by integrating by parts in x and ry, 

f 
Dp = 0 (3.3) 

for any j3. 
Non-abelian localization comes from the fact that, if Da = 0, 

f f 
ff= aexp(tDI) (3.4) 

for any equivariant form 1. This follows from (3.3), using Da = D2 = 0. We 
pick 

(3.5) 

where bi is a function of the x’s only. (So in mathematical terminology, 
A = ‘& biti’ is the G-invariant one-form on M used in section 2.) We insert 
this in (3.2), compute DA, and perform the 4 integral. If CY is independent of 
A we get 

1 
a =vol(G) (2ae)@ J 

dx’dyl’a 
X 

(3.6) 

If (Y depends on C$ in a sufficiently mild fashion, then (3.6) is replaced by a 
possibly more complicated formula with similar properties. The main point 
of (3.6) is that in the limit of t + o;), the integral becomes localized near the 
solutions of 

Kibi = 0, a = 1,. . . ,s, (3.7) 

and can be written as a sum of contributions that depend only on the local 
data near solutions of (3.7). This is the non-abelian localization of section 2. 

Now, in our more detailed applications, we wish to assume that X is a 
symplectic manifold, with symplectic form o = iWijv/‘v/‘. We also assume 
that the V, are derived via Poisson brackets from Hamiltonian functions ,ua, 
or in other words that 

c = wiiajpa (3.8) 

(where OijWjk = 8;). In this case, we set I = C, & and we let 

bj = $J’jdiI 3 (3.9) 



324 E. H’itten / Two dimensional gauge theories revisited 

with the matrix J restricted by requiring that J’ = -1 and that the “metric” 

gij = J”iOkj (3.10) 

is symmetric and positive definite. This is usually described by saying that 
J is an almost complex structure on X for which w is of type (1,l) and 
positive. J’s obeying these conditions always exist. In this situation, (3.7) can 
be written 

0 = t’aiiaiI. (3.11) 

This implies that 
0 = CvV,‘bi = g”G’iIajI, (3.12) 

a 
and hence that 

0 = ail. (3.13) 
Since (3.13) obviously implies (3.11), we have learned that, with the particular 
choice of II that we have made, the non-abelian localization for Hamiltonian 
actions on symplectic manifolds amounts to a formula involving a sum over 
the critical points of I, another main result of section 2. 

In section 2, we then specialized further to the case that 

Q = exp (tCOijyiyj - iqb”p.) . j?, (3.14) 

where p has at most polynomial dependence on 4. For instance, suppose 
j3 = 1. In this case, it is convenient to perform the w integral to reduce the 
integration over x, rl/ to an integration over x only. In fact, although in general 
there is no natural measure on a manifold X, by introducing the symplectic 
form o as in (3.14) and performing the w integral we get such a measure: 

dx’~-~~~dx” dyl’ 
J 

.*.d~” exp(iwijv’y/‘). (3.15) 

As the y integral gives e, the measure on X obtained by performing this 
integral is simply the standard Liouville measure, which if o is regarded as 
a two-form is usually written on/n!. In any event, up to a constant multiple, 
this is the only measure on X that can be constructed using o alone. 

After performing also the Gaussian integral over 4, we get 

f 
’ Q = vol(G) (2ae)5/’ 

(3.16) 
.x 

A more elaborate expression with the same essential properties arises if we 
permit /3 f 1 (with polynomial 4 dependence). 

Formula (3.16) makes it clear that the dominant contribution for E -, 0 
comes from the absolute minimum of I = (p,~), that is, the solutions of 
p = 0. One also expects heuristically that, in the evaluation via non-abelian 
localization, an arbitrary critical point P must make a contribution of order 
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exp [-I(P)/2e] for e + 0. This latter assertion was justified (under some 
assumptions) in section 2.4, and will not be reconsidered here. What we 
want to do here is to reexamine from a physicist’s point of view the relation 
found in section 2 between the contribution of the minimum at p = 0 and 
the cohomology of M = pL-’ (0)/G. This will be done by (in a field theory 
language) mapping a suitable “cohomological” field theory (for background 
see refs. [ 39-451) to a suitable “physical” field theory. The mapping between 
the two is essentially the proof of non-abelian localization, looked at in reverse. 
The mapping we will find has an analog, much less understood, in the relation 
[ 13-l 5 ] between physical and topological gravity in two dimensions. 

3.1. THE COHOMOLOGICAL GAUGE THEORY 

At this stage, we will specialize to the case of two dimensional gauge 
theories. Thus, for the space X of the above discussion, we take the space A 
of connections on a vector bundle E, with compact structure group H, over a 
two dimensional surface Z. For G we take the group of gauge transformations 
of E. The gauge field A plays the role of the x’s in the above formulas; the v/‘s 
are now an anticommuting one-form with values in the adjoint representation 
of H; and the 4’s are a zero-form on C also with values in the adjoint 
representation. 

The (A, v, $) system is the basic multiplet of cohomological Yang-Mills 
theory. In physical notation the transformation laws are 

6Ai = ief//i, 

6ffi = --EDi+ = --E (ai$ + [Aj,(i5]), 

sfp = 0, (3.17) 

with E an anticommuting parameter. In terms of the operator D of eq. (3.1), 
this can be written 60 = iD@, for every @. It is also conventionally written 
60 = -i{Q, CD}, where & is the BRST operator (so Q = -D). As in the 
general discussion, Qz = 0 (or D’ = 0) up to a gauge transformation. In 
fact, Qz = -id+, where & is the generator of a gauge transformation with 
infinitesimal parameter 4. We introduce a ghost number quantum number, 
with the ghost numbers of (A, w, 4) being (0, 1,2 ). 

Additional multiplets, which typically are needed to write Lagrangians (and 
which are analogous to antighost multiplets in usual BRST quantization), can 
be introduced in the following standard way. One considers pairs (I(, v ) of 
opposite statistics and ghost numbers (n, n + 1 ), for some n, and with 

6u = iev, 6v = E[f$,Zf]. (3.18) 

In two dimensional gauge theories, it is convenient to introduce two such pairs 
(2, q) and (x, -iH), with II a commuting field of ghost number -2, and x an 
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anticommuting field of ghost number - 1. So 

61 = ieq, 6q = E[~,J-], 

6% = EH, 6H = ie[$,x]. (3.19) 

Any expression L = -i{Q, V}, with V gauge invariant, will be Q-invariant, 
since Q2 = 0 on gauge invariant functions. In writing a Lagrangian, we wish 
also to pick V so that all fields will have a non-degenerate kinetic energy. A 
suitable choice of V, which conserves ghost number, is 

V = &/dpTr[ix(H-2*F) +g’jDiivj]. (3.20) 
z 

Here C is the Riemann surface on which we formulate the theory. It has been 
endowed with a metric g, and p is the corresponding Riemannian measure. h 
is a real constant. F = dA + A A A is the Yang-Mills field strength, and * is 
the Hodge star operator; we also set f = *F = iEi’Fij. One finds that 

L = - i{Q, V} 

=& ,j(H-f)2-if2-ix*DV+iDiVVi 

z 

+DiJ-D’4 + iix[x,41 + i[y/i,Alw’]. 
One can solve for the auxiliary field H by its equation of motion 

(3.21) 

H = f, (3.22) 

and delete the (H - f )2 term from the Lagrangian. 
The quantum field theory with Lagrangian (3.21) is a topological field 

theory, and independent of the choice of the coupling parameter h, because 
although the coupling and the metric g appear in L, they only appear in terms 
of the form {Q, . . .} ( since L itself is of this form). By dropping the (H - f )2 
term and taking h + 0, one sees that all computations can be performed by 
expanding around the minimum 

F=O (3.23) 

of the gauge boson kinetic energy. 
In the weak coupling limit, the 4-1 integral can be treated formally via one- 

loop determinants and Feynman diagrams. If one wishes to treat this integral 
more honestly, one either considers 4 to be complex and 1 = 5, or (as was 
natural in ref. [42] ) one takes 4 real and 1 imaginary. For our purposes, such 
a choice need not be specified. To minimize the scalar kinetic energy one 
requires 

0 = Dib (3.24) 
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(if A = & in the other case this requirement comes from stationary phase). 
If A is an irreducible solution of (3.23) (in the sense that its holonomy 
group commutes only with the center of H), then (3.24) implies C#J = 0, since 
otherwise the holonomy group would have to commute with 4. 

More fundamentally, (3.23) and (3.24) should be regarded as the conditions 
6~ = 0 and 6y/ = 0 for a BRST fixed point, as explained in ref. [ 451, section 
3.1. [Sx = 0 coincides with (3.23) after using (3.22).] Let U be the space of 
solutions of (3.23) and (3.24). 

Lagrangian (3.2 1) is a “standard” Lagrangian for the two dimensional analog 
of Donaldson theory. Because of the independence of h, all calculations can 
be performed in the weak coupling limit, where as just indicated they reduce 
to integrals over U. For gauge groups H and bundles E such that reducible 
solutions of (3.23) do not exist, U is the same as the moduli space M of flat 
connections on E up to gauge transformation, and the correlation functions 
are intersection pairings on M, as analyzed in detail by Baulieu and Singer 
[43] (in the analogous four dimensional theory). The principal difficulty in 
understanding the theory, as explained in the second paper in [ 391, comes 
from the zero modes of 4 and of ;1 = 5, which can arise for reducible 
connections, and as a result of which U and M do not coincide in general. 
This motivated the search for the following method of eliminating these fields 
from the problem. 

3.2. MAPPING TO THE PHYSICAL THEORY 

3.2.1. The strategy. If we replace V by V + t V’, with t a constant and V’ 
some new gauge invariant operator, then the theory with Lagrangian 

L(t) = -i{Q, V + tV’} (3.25) 

is independent of t as long as (i) V’ is such that L (t ) has a non-degenerate 
kinetic energy for all t a6 ; (ii) the perturbation by V’ does not permit any new 
fixed points, that is, solutions of 6% = 6~ = 0, to flow in from infinity. The 
latter condition is needed because the space of fields over which one integrates 
(in performing the Feynman path integral) is not compact, and all statements 
about topological invariance require pinning down the behavior at infinity. 

We will actually consider a choice of V’ such that condition (ii) is not 
obeyed. When this is so, the fixed point equation 6~ = 6y/ = 0, in addition 
to having the component M (or in general U) discussed above”’ will acquire 
additional components M,. The Feynman path integral will thus reduce to 

*’ This is a quantum field theory analog of requiring that a family of operators be elliptic. 
*’ Which in general might undergo some perturbations when t is varied, but we will arrange to 

avoid this. 
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a sum over the contributions of M and M,. The standard BRST arguments 
show that the contribution of M is independent of t, but as the path integral 
will give naturally a sum of the contributions from M and M,, it might appear 
that there is no way from studying the (simpler) L (t f 0) theory to recover 
the result of the (interesting but harder) theory L(t = 0). To accomplish this, 
we will at a judicious moment introduce one further trick to disentangle the 
contributions of M and M,. 

3.2.2. Elimination of 1. We set 
1 

V’ = -iTs 
s 

dpTTrx2. (3.26) 
E 

This will lead to a Lagrangian that does not conserve ghost number; the ghost 
number of V’ is -3, so that of {Q, V’} will be -2. We find that the analog of 
(3.21) is 

L(t) = - i{Q, V + tV’} 

+ix*Dy/ + iDivy/‘-DiAD’$ + $x[x,$J + i[yi,n]v’]. (3.27) 

As before, H can be integrated out, simply setting H -At - f = 0. The benefit 
from perturbing L to L(t) is that for t #= 0, 2, x, and q can also be integrated 
out, leaving a local Lagrangian: 

L’(t) = h/dpTr (+ (DifD’$ + if[vi,w’] -iD,~‘~‘jDi~j) 
E 

+ i { ~iD,y/‘[Dkvky41 + i (-D&V + iP,% @I)*}). 
(3.28) 

For instance, 1 is integrated out by setting 

2 = -f/t. (3.29) 

Already we can assert a major point: the standard “cohomological” La- 
grangian (3.21), in which the correlation functions of BRST invariant opera- 
tors have a known description in terms of cohomology of M, can be deformed 
preserving the BRST symmetry to a Lagrangian written in terms of the mini- 
mal multiplet A, v/, 4 only, namely (3.28). Lagrangians (3.21) and (3.28) may 
not be equivalent, but the failure of such equivalence can only come from 
new components M, of moduli space that flow in from infinity for t f 0; the 
contribution of the “old” component M must be independent of t. 
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The terms of order l/t in (3.28) are 

The terms of order l/t* are similarly 

dp Tr (&Dk4D,v’ - i[v,, v’lDkylk) . 

(3.30) 

(3.31) 

We will study (3.28) in the limit of large imaginary t, and since the terms 
of order l/t already give a non-degenerate kinetic energy, the terms of order 
l/t* can simply be dropped. Setting t = -iu, we reduce L’ to 

L”(U) = & ‘I dpTr(DifD’cj + if[n,W’] -iD,v/‘e”Di’yi). (3.32) 
E 

NOW, we want to ask what kind of “localization” there is in the path integral 

1 
vol(G) s 

DAD~/Dc#I exp[-L”(u)]. (3.33) 

The main point is that the C$ integral is 

ID4 ew (&[dp Tr@i@f) m gd(DiD’f). (3.34) 

The localization is therefore on the locus DiDif = 0. This equation implies 

0 = dp TrfDiD’f = - 
J J Tr(Dif)*, E E (3.35) 

and so it is equivalent to 
0 = Dif. (3.36) 

These are the classical Yang-Mills equations, that is, the variational equations 
derived from the usual Yang-Mills action I = - JZ Trf*. The space of 
solutions of (3.36) has one component, M, consisting of solutions of S = 0, 
and other components, M,, consisting of higher critical points of the Yang- 
Mills action. 

From (3.29), we see that the new components have 1 N l/t, and hence are 
absent at t = 0 and “flow in from infinity” when one perturbs to t + 0. This 
is the abstract scenario that we anticipated earlier for how a perturbation of 
the form {Q, . . .} might fail to leave the theory invariant. 
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3.2.3. Final reduction. For any BRST invariant operator 0, let (0) be the 
expectation value of 0 computed in the cohomological theory (3.2 1 ), and let 
(0)’ be the corresponding expectation value in the theory (3.32). In general 
(0) + (O)‘, because of higher critical points contributing in (3.32). We will 
describe a class of O’S such that the higher critical points do not contribute, 
and hence (0) = (0)‘. 

Two particular BRST invariant operators will play an important role. The 
first, related to the symplectic structure of M, is 

The second is 

1 
0=&p JTr(i4.F + $WAV). 

z 

8 = & J dpTrr#?. 
z 

(3.37) 

(3.38) 

We wish to compute 
(exp (w + ~6) . P)’ (3.39) 

with E a positive real number, and p an arbitrary observable with at most a 
polynomial dependence on 4. This is 

+&JTr(itiF+fy,Av)+& J ) dpTrqS2 . 
z ,?I 

(3.40) 
This is formally independent of U, and will really be independent of u as 
long as, in varying U, the Lagrangian remains non-degenerate and with a good 
behavior at infinity in field space. The particular choice of o and 8 has been 
made to ensure that these conditions are obeyed (for E 2 0) even at u = 00. 
Thus, we can simply set u = 00 in (3.40), discarding the terms of order l/u, 
and reducing to 

(exp (w + ~6) .P)’ = --& JDAww 
1 G JTr(iW+ fwAw) + & J ) dpTr$2 ./3. (3.41) 

z .?I 
This is the key step; we have passed from “cohomological” to “physical” 
Yang-Mills theory. 
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First consider the special case of e = 0, from which all the topological 
information can be extracted. If we also set /I = 1, then the 4 integral gives a 
multiple of nxEZ. 6 (F ), and thus in this special case, the higher critical points 
with F + 0 do not contribute. Even for /I f 1 (but still at E = 0), the 4 
integral gives a more complicated distribution supported at F = 0, #8 so still 
the higher critical points do not contribute. As (3.32) differs from (3.21) only 
by possible contributions of these higher critical points, the vanishing of these 
contributions means that 

(ew(o) . P) = @w(w) . P)‘, (3.42) 

for all p with polynomial 4 dependence. 
All information of topological interest can be extracted from (3.42). Knowl- 

edge of the left hand side of (3.42) for arbitrary /I is enough to determine 
all expressions (/3) for BRST invariant p. [In fact, this is so for a rather 
elementary reason. If /.I has definite ghost number, then (/3) vanishes unless 
its ghost number is equal to the (real) dimension of M, and in that case, 
since o has ghost number 2, (p) = (exp (0) + p). ] On the other hand, the right 
hand side of (3.42) is effectively computable using (3.41), as will be clear in 
sections 4 and 5. 

The exponent in (3.41) is a Lagrangian 

L(A,y/,$) = JTr(-i~F-fy/~~)--~Jd~Tr9~, (3.43) 
I E 

which is entirely equivalent to conventional two-dimensional Yang-Mills the- 
ory. In fact, w is a decoupled field with only a mass term and Euler-Lagrange 
equation w = 0; its only role is to put things in the right theoretical context. 
(Including v/ in this way was originally suggested several years ago by S. Ax- 
elrod.) 4 can also be integrated out, to put the Lagrangian in its conventional 
Yang-Mills form. 

3.2.4. Interpretation of the measure. In quantum gauge theories in general, 
on a space-time manifold M, the path integral measure on the space A 
of connections is usually defined by first introducing a metric on M. This 
permits one to define on A a metric as follows: a tangent vector to A is an 
adjoint-valued one-form a, and one sets 

lal2 = --&/TraA*a. 
E 

(3.44) 

*’ This generalizes the fact that in one dimension, J(X) = s-“, dd exp(i&) . @I is for any 
positive integer n a distribution supported at x = 0. 
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From this metric one formally gets a measure, and this is the usual path 
integral measure for gauge fields. 

However, in two dimensions, if M is orientable, there is another approach 
to defining a measure; this comes from the symplectic structure on A that we 
have noted in ( 1.8). Moreover, the measures on A defined by the metric or 
the symplectic structure agree, because the metric (3.44) is Kahler. 

Look back to (3.41), assuming first that fi = 1. In this case, the only v 
dependent factors are in 

(3.45) 

This should be compared to the integral in (3.15). As in the discussion of 
that equation, integrating out v/ will give the symplectic or Liouville measure 
on A, which is the usual path integral measure. In keeping with convention 
(but somewhat inconsistently), we will call this measure DA. 

Thus, if /I = 1, the only role of w was to give a more sophisticated way to 
build in the standard measure on A. Things are different if p f 1 and more 
specifically if B depends on t,u. In that case, integrating out v/ will replace fi 
by some function of A and 4 only. This will be a major step in the detailed 
computations in sections 4 and 5. 

3.2.5. Elimination of 4. The other main step in the calculations is closely 
related to the ability to eliminate $. This is possible because derivatives of 4 
are absent in (3.41). (This is so even if /3 f 1; the BRST cohomology of the 
theory can be represented by operators that do not involve derivatives of 4.) 
At this point, let us generalize to E #= 0, but for simplicity p = 1. In this case, 
by integrating out $ (after integrating out cy as discussed above), we get 

(exp (w + ~6))’ = &/DA ev ( qjdii’W2) . (3.46) 

This is the path integral of conventional two dimensional Yang-Mills theory. 
Now, at E #= 0, we cannot claim that the ( ) and ( )’ operations coincide, since 
the higher critical components M, contribute. However, their contributions 
are exponentially small, involving the relevant values of I = - Jz d,u Trf’. So 
we get 

(exp(b + EQ)) =& /DA exp (T[dpTrJ’) 

+ O(exp(-27r2c/f 11, (3.47) 
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where c is the smallest value of the Yang-Mills action I on one of the higher 
critical points. 

For j3 + 1, the elimination of 4 is more elaborate, but can still be carried 
out explicitly. A version of this will be done in our detailed calculation of 
intersection numbers in section 5. 

3.3. THE BRST COHOMOLOGY 

Now we want to describe the BRST invariant observables of the theory. 
Let T be a homogeneous invariant polynomial on the Lie algebra ‘H. Then 

a BRST invariant operator that cannot be written as {Q, . . .} is 

C$% = 7-(4(P)), (3.48) 

with an arbitrary P E C. However, for P, P’ E C, the difference T($(P) ) - 
T (4 (P’ ) ) is {Q, . . .}; this follows from the formula 

d($’ = -i{Q, OF’}, (3.49) 

with 
o(1) = aT a 

T apY- (3.50) 

One similarly has 
do;’ = -i{ Q, Og’}, (3.51) 

with 
(2) 1 a2T 0, =-- aT 

2 apa@ 
ya A yb + iWFa. (3.52) 

Here Fa are the components of the curvature two-form F, that is F = 
Ca TaF’- 

The following BRST invariant observables can be formed from these 6’s. 
Since (3.5 1) asserts that 0;) is annihilated by Q up to an exact form, we 
have the Q-invariant observable 

Tc2) = 
s 

0;). (3.53) 
z 

Likewise, for every oriented circle C c C, we have 

T(,,(C) = 
J 

OF’. (3.54) 
C 

Formula (3.49) implies that this is Q-invariant, and (3.5 1) implies that, up 
to {Q, . . .}, it depends only on the homology class of C. Finally, we have the 
original operator 

T(,,,(P) = O”‘(P). (3.55) 
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To unify the notation, note that for j = 0, 1,2, and V a j-dimensional 
submanifold of C (so V is a point for j = 0, a circle for j = 1, and V = C 
for j = 2), we have defined an operator r(i) (V). Notice that if A, cy, 4 are 
considered to have degree or ghost number 0, 1,2, and T is of order r, then 
T(j) is of ghost number 2r - j. 

In applications, it may be convenient to replace T(o)(P) by its averaged 
version 

T(o) U’) + s dp T(4), (3.56) 
2 

which we will use in sections 4 and 5. Of course, the two are cohomologous. 

3.3.1. Mathematical counterpart. Now, mathematically, observables with 
properties analogous to these can be defined as follows. The moduli space M 
of flat connections on an H bundle E parametrizes a family of flat bundles on 
z. One can try to fit them together into a “universal bundle” & over M x C. 
The obstruction to existence of E comes from possible symmetries of flat 
connections. If one restricts to a dense open set in M parametrizing irreducible 
flat connections, the only symmetries are constant gauge transformations by 
elements of the center of H. In the adjoint representation, these act trivially, 
so the universal bundle exists at least as an adjoint bundle; this is good enough 
for defining the rational characteristic classes that we want. 

So pick a connection B on E, and let F = d.B + BAB be the curvature. Then, 
for T as above, the closed 2r-form T(F) defines an element of H*’ (M x C, qB). 
If I/ is a j-dimensional submanifold of C, then by restricting T(F) to M x V, 
and integrating over the fibers of the projection M x V ---) M, one gets elements 
T(j)(V) in H*‘-J(M,lR). 

It is striking that the F(j) (V) have the same degree 2r- j and are determined 
by the same data as the T(j). In fact, it can be shown that in “cohomological 
gauge theories”, as long as M is non-singular, there is a precise correspondence 
between the Ttj)‘S and the Ftj)‘s, in the sense that (as long as singularities of 
M can be neglected) 

(3.57) 

(The factor of l/#Z (H) is explained in section 2.2 of ref. [ 111. ) See ref. 
[43] for an explanation of this formula in the context of four dimensional 
Donaldson theory. The discussion carries over without modification for the 
analogous two dimensional theory (3.21). Therefore, following through our 
derivations above, (3.57) holds for the contribution of ,K’ (0) if the left hand 
side of (3.57) is computed using the simplified cohomological Lagrangian 
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(3.28), and holds modulo terms that are exponentially small for E t 0 if one 
uses instead the physical Yang-Mills Lagrangian (3.43). 

3.3.2. Reduction to generators. Elementary arguments show that in case T can 
be factored as a product of invariant polynomials, say T = U V, then the 
operators T(j) can be expressed in terms of the U(j) and V(j). In fact, it is 
fairly obvious that up to {Q, . . .}, 

T(o) = U(o,J’to,s (3.58) 
and for any circle C 

T(I)(C) = U(o,Ql,(C) + U&X’(o,. (3.59) 
The corresponding factorization of T(2) is slightly more complicated. Let C,, 

- 1, . . . ,2g, be circles representing a basis of HI (C, Z), with intersection 
&m yor. Then up to {Q,. . .}, 

T(2) = U(2)50) + U(O)~2) + QbTu(1)G)~*)(cT). (3.60) 
U.T 

These formulas show that it is sufficient to evaluate (3.57) with the T’s taken 
from a set of generators of the ring of invariant polynomials on ‘H. 

4. Localization and Yang-Mills theory 

Our goal in this section is to make a detailed comparison of the localization 
theorem with two dimensional Yang-Mills theory. We will also begin the 
computation of intersection numbers on moduli spaces of flat connections; 
these computations will be completed in the next section. 

To begin with, we need some basic facts about the quantum gauge theory. I 
will here explain these facts from a continuum point of view. This discussion 
can be read in conjunction with section 2.3 of ref. [ I 11, where many of the 
same facts are derived using a lattice regularization, with more detail on some 
points. Other approaches have been cited in the introduction. 

Notation is generally as in earlier sections. Thus, A is a connection on an 
H-bundle E over a Riemann surface X. F = dA -I- A A A is the curvature. 
4 is a zero-form with values in ad(E). We write 4 = C, qYTa, with T, an 
orthonormal basis of the Lie algebra ti of H. At the outset, we assume that H 
is connected and simply connected. Later we relax the assumption of simple 
connectivity. 

The topologicalfield theory. First we consider the topological field theory with 
Lagrangian : I+ 

(4.1) 
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which is related to Reidemeister-Ray-Singer torsion [ 191. The partition func- 
tion is defined formally by 

1 
=(=I = Vol(G) s 

DAD$ exp(-L). (4.2) 

Here, if E is trivial, G is the group of maps of C to H; in general G is the 
group of gauge transformations. 

Formula (4.1) should really be considered to correspond to a one parameter 
family of topological field theories. Different methods of defining the path 
integral will differ by terms coming from a substitution 

(4.3) 

where v is an arbitrary constant, and R is the curvature of a metric on C 
(which might enter in regularizing and gauge fixing the theory; or, if one uses 
a lattice regularization as in ref. [ 111, a similar ambiguity arises in defining 
the local factors). Of course, the substitution (4.3) just multiplies the path 
integral on a surface C of Euler characteristic x (2) by a “trivial” factor 
exp[-vx (C)l. We ultimately will fix 2) by requiring precise agreement (and 
not just agreement up to such a trivial factor) with the theory of Reidemeister- 
Ray-Singer torsion. In principle, with a careful calculation using a regulator 
in which the manipulations of section 3 are valid, one should hopefully be 
able to determine a priori the necessary value of 21. 

Cunonicul quantizution. Canonical quantization of (4.1) shows that the canpn- 
ical momentum to A is 

KA = 4, (4.4) 
where we set $ = $/47c2. Hence in the quantum theory, if the A” are taken to 
be multiplication operators, then 6 acts as follows: 

$a = -i&. (4.5) 

If C is a circle in Z - an initial value surface - then the Hilbert space tic 
obtained by quantization on C can be considered with this representation of 
the canonical commutation relations to consist of gauge invariant functions 
Y(A). Such a function must be a function only of the monodromy of A 
around C, which (picking a base point x E C) we write as 

U=Pexp A. 
f (4.6) 

To be more precise, !P must be a class function of U, invariant under conju- 
gation, and so must have an expansion in characters: 
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The sum runs over all isomorphism classes of irreducible H representation 
a; X~ (U) is the trace of U in the representation a; cn are complex numbers. 
Thus the functions xa (U) give a basis of Xc. The lattice regularization used 
in ref. [ 111 makes it clear that this basis is orthonormal. 

Casimir operators. Let Q be an invariant polynomial on 7i. Pick y E Z. 
We want to determine fhe quantum operator Q on XC corresponding to the 
classical observable Q (4 ) . 

The result can be determined from (4.5), apart from a normal ordering 
ambiguity that will be treated later. We have 

& .x=(U) = -iTr, T,Pexp 
f 

A, (4.8) 

Y 

since the right hand side is the first variation of ,yO (U) with respect to A. 
Formally computing higher derivatives in the same way, we get 

Q(J) + e = Q(-Z). (4.9) 
The right hand side is just the Casimir operator determined by Q. 

Formula (4.9) is good enough for our purposes temporarily, but it has the 
following limitation. If one studies the theory (4.1) with an arbitrary reg- 
ularization, then gauge invariant operators such as Q (4) will “mix” under 
renormalization - by a normal ordering ambiguity - with similar operators 
determined by lower order polynomials. Formula (4.9) is one natural choice, 
but we will ultimately have to modify it. For any given gauge group, there are 
only finitely many independent Casimir operators, and therefore the renormal- 
ization problem involves finitely many parameters. For instance, for SU(2) 
or SO (3)) one such parameter will appear. 

The three-holed sphere. Every oriented Riemann surface can be built by gluing 
together three-holed spheres, so the path integral on a three-holed sphere C 
(fig. 1) is an important special case. Let Ci, i = 1,. . . ,3, be the three boundary 
circles. Let Vi be the holomony of the connection A about Ci (orientations 
on the Ci, used in computing the holonomy, are induced from C). The path 
integral on the three-holed sphere gives a vector Y{s) E @=,3-lci, which must 
therefore be of the form 

(4.10) 
QI ,az>a, i=l 

I now claim, however, that c~,,~~,~, vanishes unless (~1 = ~2 = as. To see 
this, we consider the path integral of fig. lb with the insertion of some operator 
0 = Q (6) at some point z E Z. By factorizing in an appropriate channel, as 
in fig. lc, one can consider this operator to act on any of the three external 
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Fig. 1. (a) A three-holed sphere, with the boundary components labeled by representations q. 
(b) The same path integral with an insertion of an operator 0. (c) One can consider this operator 

to act on any of the three external states. 

states xni (Vi), whence, according to (4.9), 0 can be replaced by the value of 
the Casimir operator Q(-3) for the representation CY~. Hence c,,,~,,~, = 0 
unless the ai have the same values for all Casimirs. This implies that they 
must be isomorphic [46, 5 1261. The vector (4.10) thus collapses to 

‘y3} = CCa fiXa( (4.11) 
a i=l 

The two-holed sphere. We now consider the two-holed sphere of fig. 2a, with 
boundary components Cl, C2 and monodromies about them Ur, U2. Labeling 
the boundary components by representations ai, the path integral gives a result 
of the general form 9721 = C,,,,, ea,,,,xa, (ul)xa2(Ud. However, ea,,az = 0 
unless or = (~2, by the argument in the last paragraph, so we can write 
e a,raZ = &,,,,e,,, for SOme e,‘s. 

The path integral of the two-holed sphere with labeled external states can 
be given a special interpretation. In fact, e,,,=, = kaz] exp(-HT)]x,,), where 
H is the Hamiltonian and T is the elapsed time. As H = 0 for the topological 
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Fig. 2. (a) A two-holed sphere with labeled boundaries. (b) A one-holed sphere with a labeled 
boundary. 

field theory (4.1), we have merely e,,,a, = C-J,,,=,, so e, = 1 and 

q2> = ~xawlMu2). 
a 

(4.12) 

The one-holed sphere. The path integral of the disc or one-holed sphere (fig. 
2b) similarly gives a result of the general form 

q1,w = ~cf&W) (4.13) 
(I 

with U the monodromy about the boundary. Now, however, we can reason as 
follows. Writing down the path integral from (4.1), 

J (4.14) 

we see that the 4 integral gives explicitly 6 (F ). 
A connection on the disc with F = 0 necessarily has U = 1, so the function 

!P{I,,) ( U) in (4.13) must be a delta function supported at U = 1. According 
to the theory of compact Lie groups, we have 6 (U - 1) = C, dim(cw )X, ( U), 
with dim(a) the dimension of the representation CY. Thus 

fa = wdim(a), (4.15) 

with w an unknown constant, whose origin was explained in connection with 
(4.3). 

We can now identify the unknown constants c, in the path integral on 
a three-holed sphere. As in fig. 3, we decompose a two-holed sphere as the 
union of a one-holed sphere and a three-holed sphere, glued on their common 
boundary. Factorizing the partition function of the three-holed sphere, we 
learn that 

ea = GA (4.16) 
Since we already know e, = 1, we get 

c-x = w-‘/dim(a). (4.17) 
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-. _--- --_ 
al al 

Fig. 3. Factoring the amplitude of a two-holed sphere in a suitable fashion. 

For a derivation of these results using a lattice regularization, see ref. [ 111, 
section 2.3. 

Combining the pieces. Now we can combine the pieces and determine the 
partition function of the topological field theory (4.1) on an oriented Riemann 
surface z of genus g. Such a surface can be regarded, as in fig. 4, as the union 
of 2g-2 three-holed spheres, glued on 3g- 3 circles. Labeling each circle Ci by 
a representation ai, and computing the path integral on each three-holed sphere 
using (4.11), one finds that the sum over the ai collapses to a single sum, 
because of the “diagonal” nature of the partition function of the three-holed 
sphere. The result for the partition function is thus Z(C) = C, czg-*. 

After adjusting w by comparing to Reidemeister-Ray-Singer torsion, as 
explained in ref. [ 111, the partition function is finally 

(4.18) 

The moduli space M of flat connections on C has the symplectic structure 
w of eq. (1.8), and hence a volume form U/n!. As explained in ref. [ 111, 
section 2, the partition function Z is related to the volume of M by Z = 
Vol (M ) /#Z (H). [One divides here by #Z (H), which is the number of 
elements of the center of H, essentially because the generic connection has 
#Z(H) symmetries.] Hence the volume of M is 

I exp(w) = I 
Co” 
7 = #Z(H) ( ~~:(dtJm)H)2am2 F (dimfr)Zg-2* (4*1g) 

M M * 

Fig. 4. A surface of genus g - in this case g = 2 - can be regarded as a union of 2g - 2 
three-holed spheres. 
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This is then a first special case of evaluation of the intersection pairings on 
moduli space. 

4.1. GROUPS WITH NON-TRIVIAL Y’C, 

So far we have assumed that the gauge group H is connected and simply 
connected. These conditions ensure that an H-bundle E over a two dimensional 
surface C is trivial. We now wish to drop the condition of simple connectivity. 

Let r be a subgroup of the center Z (H). We take the gauge group to be 
H’ = H/T, which of course is still connected but is not simply connected. 

4.1.1. Classification of bundles. An H-bundle on a two dimensional surface is 
necessarily trivial, but this is not so for H’-bundles. The possible H/-bundles 
have the following standard description. Let C be a closed oriented Riemann 
surface of genus g. Let E’ be a principal H’-bundle over C. Let P be a point 
in 6. E’ is necessarily trivial when restricted to C - P (that is, C with P 
deleted). Thus, on E - P, E’ can be lifted to a principal H-bundle E. 

A connection A’ on E’, when restricted to C - P, lifts to a connection A on 
E. However, A does not necessarily extend smoothly over P. The monodromy 
u of A about P is an element of H that projects to the identity in H’ (since 
A’ extends smoothly over P). Thus, u is an element of r. It is easy to see that 
u is a topological invariant of E’. Conversely, it is standard that u is the only 
such invariant and can take arbitrary values. Thus, the possible H/-bundles 
E’ (u) are classified by the arbitrary choice of u E r. 

4.1.2. The non-singular cases. We will develop most of the story for general H’ 
and E’ (u). However, the topological results that arise are easiest to understand 
in cases in which the space of flat connections on E’(u) is smooth, and is 
acted on freely by the gauge group. This implies in particular that the moduli 
space M’(u) of flat connections on E’(u) is smooth. 

The main case in which this occurs is the following. Let C be a Riemann 
surface of genus 2 1. Let H = SU(N), and let H’ = H/r, with r E Z/NZ 
the center of SU( N). Finally, let u be a generator of r. In such cases, the 
topological conditions that we want are known to hold. [For g = 1, the moduli 
space of flat connections on E’(u) is a single point, for g > 1 a smooth closed 
manifold of dimension (iV* - 1) (2g - 2). ] The simplest example, which we 
use later for illustration, is H = SU(2), H’ = SO( 3), u = - 1. 

4.1.3. The volume of the gauge group. We want to perform the H’ path integral 

1 
Vol(G’) s 

DA’Dc$ exp(-L), (4.20) 
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with G’ the group of gauge transformations of E’(u). We will do this by 
relating the integral over A’ to an integral over its lift A. We must worry about 
two points: the comparison of volumes of G’ and G, which we consider first; 
and the role of the singularity at P. 

The group G of maps of C to the connected and simply connected group H is 
connected. This is not true for G’; the set of components of G’ can be identified 
with the finite group Horn ( HI (Z, H), r ) . This group has #fT2g elements. Thus, 
if G’, is the identity component of G’, we have Vol( G’) = #r2gVo1( G; ). 

On the other hand, applying pointwise the projection H --) H’ = H/r gives 
a natural map G + G; whose kernel consists of constant gauge transformations 
by elements of r. Hence Vol(G) = #rVol(G;). 

Combining these formulas, we have 

Vol(G) = #Z+2gVol(G’). 

For future use, we also note the following elementary facts: 

Vol(H) = #r. Vol(H’), 
#Z(H) = #I-.#Z(H’), 

#x,(H’) = #I-. 

(4.21) 

(4.22) 

4.1.4. The singularity at P. We now come to the essence of the matter, which 
is the role of the singularity at P. This can be deduced by cutting out of C 
a disc D containing P (see fig. 5) - so as to factorize the computation on 
the Hilbert space 3-Ic associated with C = 8D. The path integral over q5 is 
still localized - as in (4.14) - on connections with F = 0 away from P. 
Because the monodromy about P is prescribed to be u E r, the monodromy 
U around C is u rather than 1. In the derivation of (4.15), we must replace 
6(U - 1) = C,dim(a)X,(U) by 6(U - u) = C,dim(a)X,(U) .A,(u-I). 
Here A, (u-t) is the following. In the LY representation of H, the element u-l 
of the center of H is represented by a complex number of modulus one that 
we have called A,(u-I). [So A,(u-*) = x(l(u-l)/dim(a).] 

Thus, the role of the singularity at P is to bring about a substitution 

xdim(ry)Xa(U) + xdim(a)xa(U) .A,(#-‘). (4.23) 
a (2 

Fig. 5. Factorizing the genus g amplitude on a disc D containing the point P. 
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Upon gluing the disc D into the rest of JC and carrying out the overall 
evaluation of the path integral, the only role of the singularity is to multiply 
the contribution of a representation o by a factor of A, (u-l). (In ref. [ 111, 
section 3, the factor of A, (u-l ) is extracted in the special case H = SU (2)) 
H’ = SO (3), u = - 1 from the Verlinde formula. This can presumably be 
done in general.) 

4.1.5. Evaluation of the twisted partition jknction. Now we want to calculate 
the H’ partition function 

1 
ZG;u) = Vol(G,) s 

DA’04 exp(-L). 

First we calculate the corresponding H partition function for connections 
on z - P with monodromy u around P. This is 

1 
- Z(C;u) = Vol(G) 

J 
DAD4 exp(-L). 

A is the lift of A’. From what we have just said, this is given by the same 
formula as (4.18) but weighting each representation by an extra factor of 
n&4-‘). so 

‘(~C;‘) = (Zn)dimH ( Vol(H) )2g-2 T (~;~;:p’-, . (4.26) 

We now use (4.21) to relate Z (C; u) to Z (zc; u), and also (4.22) to express 
the result directly in terms of properties of H’. Using also (4.22), we get 

Note that in this formula, the sum runs over all isomorphism classes of 
irreducible representations of the universal cover H of H’. 

Here is a check. Note that 21 + A, (21) is a character of the finite abelian group 
r. Irreducible H’ modules are the same as irreducible H modules for which 
this character is trivial. By the orthogonality of the characters, CuEr A, (u) 
vanishes unless 1, is trivial, in which case of course it equals #r = #ai (H’). 
Hence we get 

c km.4 = ( (y;!)yf:,)2g-2y (dim;)2gm2. (4.28) 
UEI- 

Here C’ is a sum over isomorphism classes of irreducible H’ modules. On the 
left the sum over u E r should be interpreted as a sum over all isomorphism 
classes of H/-bundles. In general, if u is construed to label these isomorphism 
classes, (4.28) is true, as explained in ref. [ 1 I], section 2.3, even if H’ is 
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not connected. If H’ is connected and simply connected, there is only one 
isomorphism class of H/-bundle on ZI, and (4.28 ) reduces back_ to (4.18 ). 

Just as in our discussion of simply connected gauge groups, 2 (C; u) can be 
interpreted as l/#Z (H’) times the volume of the moduli space M’(u) of flat 
connections on the bundle E’ (u). [#Z (H’) arises, again, as the number of 
symmetries of a generic H’ connection A’.] So the volume of M’(u) is 

J 
exp(w) = 

#Z (H’ ) 
#a, (H’) ( ;;yi;t) 2g-2 T (2;$;-2 * (4.29) 

M’(n) 

4.2. PHYSICAL YANG-MILLS THEORY 

Now we leave the topological field theory (4.1), and turn to physical Yang- 
Mills theory. We introduce on C a measure dp of total measure 1, and 
consider 

L=-& Tr$F-& J J dp Tr$2, (4.30) 
,?I z 

with E a positive real number. We wish to evaluate the corresponding path 
integral 

J DA@exp (/ -& Tr$F + & dpTTr4’ . J ) (4.31) 
.!I z 

Upon performing the Gaussian integral over 4 (or eliminating 4 by its classical 
equations of motion), we see that the same theory could be defined by the 
Lagrangian 

I = -& J dpTrf2, (4.32) 
c 

with f = *F and E’ = 47r2e. (The Yang-Mills Lagrangian is most often 
written in terms of E’, but the topological formulas are perhaps most naturally 
written in terms of 6.) For E f 0, the full diffeomorphism invariance of the 
topological field theory that we have discussed up to this point is reduced to 
invariance under the group of area preserving diffeomorphisms. 

We should now make a preliminary observation, analogous to the remark 
following (4.2). Different recipes for defining the path integral in (4.30) will 
differ [in addition to the ambiguity already cited in (4.3) ] by 

L + L + td I dp, (4.33) 

with t an arbitrary parameter. This term respects the invariance under area 
preserving diffeomorphisms. Just as we fixed the ambiguity noted in (4.3) 
to agree with the theory of Reidemeister-Ray-Singer torsion, we will at a 
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judicious moment adjust the value of t to agree with the topological theory to 
which we wish to compare. In principle, a suitable calculation using a regulator 
in which the manipulations of section 3 are valid could probably be used to 
give an a priori computation of t. In any case, the extra term in (4.33) has a 
“trivial” effect on the partition function, multiplying it by exp (-k’ ). 

4.2.1. The classical solutions. As we have recalled in the introduction, the 
space A of connections can be regarded as a symplectic manifold, acted 
on symplectically by the group G of gauge transformations; and I can be 
interpreted as the norm squared of the moment map p, with respect to a 
certain invariant quadratic form. The critical points of I are the classical 
solutions of two dimensional Yang-Mills theory. They have the following 
explicit description [23]. The Euler-Lagrange equation derived by varying I 
is 

0 = Df, (4.34) 

with D the gauge covariant extension of the exterior derivative. This is certainly 
obeyed for f = 0 - which corresponds to the zeros of the moment map and 
the absolute minimum of I. Higher critical points correspond to f + 0, in 
which case f, being covariantly constant, gives a reduction of the structure 
group of the connection to a subgroup He that commutes with f. Solutions of 
(4.34) can therefore be described rather explicitly: they are flat HO connections 
twisted by constant curvature line bundles in the U ( 1) subgroup generated by 
f* 

However, to simplify things, in this part of our story we will just consider 
the case that the gauge group is SU(2) or SO( 3). Then f, if not zero, reduces 
the structure group precisely to U ( I ), so in the SU(2) case, for instance, we 
get an SU(2) bundle with a covariantly constant splitting as a sum of line 
bundles. From the classification of line bundles, it follows at once that the 
conjugacy class of f is given by 

f =2nm(b g, (4.35) 

with m E i2. The value of I at such a critical point is then directly computed 
to be 

z,,, = (27cm)2/e’. (4.36) 

In the SO (3) case, there are two isomorphism classes of bundle. The bundles 
that lift to SU(2) bundles give the same result just described. The non-trivial 
SO (3) bundles can be described as SU (2) bundles on Z - P with monodromy 
u = - 1 about P. Allowing for this, (4.35 ) is just replaced by 

f = 2n(m + l/2) ; s ) 
( > 

(4.37) 
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with 112 E Z. The values of I at these critical points are now 

z:, = [2a(m + 1/2)12/E’. (4.38) 

4.2.2. The Hamiltonian. Our next goal is to evaluate the partition function of 
physical Yang-Mills theory, with Lagrangian (4.30), on a Riemann surface of 
genus g. 

The main thing that we need to do is to evaluate the Hamiltonian. To this 
aim, we pick an initial value circle C c C. We write the volume form of Z 
in a neighborhood of C as da A dr, where C is defined by r = 0, and Q is a 
periodic parameter on C, with $c do = 1. The Hamiltonian operator H will 
be the generator of translations in T. 

Standard canonical quantization shows that 

H = -16’ 2 f 
da TrJ2 + tr’. (4.39) 

We have included the extra term from (4.33), which just adds a constant to 
H. 

In view of (4.9), this can be described as follows. Let Cl be the quadratic 
Casimir operator Cz = - C, Ti, with TO an orthonormal basis of 7-1. Then 

H = ‘dC2 + k’. 2 (4.40) 

When E f 0, a measure p must be introduced on every Riemann surface 
we consider. The simplest case is the two-holed sphere C of fig. 2a. Suppose 
that the total measure is p. Then the area form of C can be represented by 
the two-form da A dr, with Q as above and 0 5 T 5 p. The path integral on C 
can be computed as the matrix element of exp(-pH) between external states 
on the boundary. The generalization of (4.12) to E f 0 is therefore simply 

q2j = CK=(UI)X~(U2)exp{-E’p[rC2(CI) + tl}. 
cl 

(4.41) 

The p dependence of the amplitude on any Riemann surface with an 
external line labeled by a representation Q is given by the same factor 
exp{-e’p[iCz(a) + t]} as in (4.41), since one can always increase the area 
of C by gluing a cylinder on to one of the external lines. Sewing together the 
external lines, it follows that also for a Riemann surface without boundary, 
the contribution of any representation QI to the partition function has this 
universal p dependence. 

Therefore, we can immediately write down the partition function, with gauge 
group H’, for connections on a bundle E’ (u), generalizing (4.27) to E f 0. 
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We get 

z(C,E;U) = #&p) (;y$2)‘“-’ 
xc J,(u-‘) exp{-e’[+C2(a) + t]} 

a (dim Ly)2g-2 
(4.42) 

There is still one unknown parameter t. 

4.3. COMPARISON WITH THE LOCALIZATION FORMULA 

Finally, we can begin to enjoy the fruits of our labors - comparing (4.42) 
to the predictions of the localization formula of sections 2 and 3. We will do 
this in full detail - identifying the contributions of higher critical points - only 
for SU(2) and SO (3). For other groups, we will study only the contribution 
of p-1 (0). 

Up to isomorphism, SU (2) has one irreducible representation (Ye of dimen- 
sion n for every positive integer n. The value of the quadratic Casimir for 
this representation is with our normalization Cz ((Y”) = (n2 - 1)/2. We set 
t = l/4, so that the eigenvalues of the Hamiltonian are just etn2/4. As will be 
clear, this value is required for agreeing with the predictions of the topological 
theory. (Otherwise, the contribution of p-r (0) is not a polynomial in E but 
has an extra exponential factor. Later, we will generalize this determination 
of t to general compact Lie groups and general Casimirs. ) 

First we consider the case of H = SU(2). Then Vol(SU(2)) = 25/2n2 with 
our conventions, and so 

1 z(c~c) = (2K2)g-l n=l 
5 exp C--f~‘P) . (4.43) 

On the other hand, for a non-trivial SO (3) bundle with u = - 1, we have 
&(u-*) = t-l)“+‘, #aI = 2 and Vol(SO(3)) = 23/2a2, so 

M (-1y+l me--l) = 2’ (s;2)g4 c exp(-etn2/4) 
n&T-2 tl=l 

(4.44) 

4.3.1. Sum over critical points. We will now show how (4.44) and (4.43) can 
be written as a sum over critical points. In doing so, we consider first the case 
of genus g 2 1; then we will return to special features of g = 0. 

First we consider the case of a non-trivial SO (3) bundle. It is convenient 
to look not at 2 but at 

p-12 
(-l)g @q= 5 (-1)” exp(-e’n’/4). 

2 * (327r2P1 n=l 
(4.45) 
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We write 

The sum on the right hand side of (4.46) is a theta function, and in the 
standard way we can use the Poisson summation formula to derive the Jacobi 
inversion formula: 

C(-l)“exp(-c’n’/4) 
n&f 

= CJ dn exp (2ninln + inn - c’n2/4) 
ma -m 

= JiEKexp (- [2A(m; m1’). (4.47) 

Putting the pieces together, 

p-lZ 
(-ljg m= 4 . (32a’)g-’ 

(4.48) 
Now let us compare this formula to the topological theory explained in 

section 2. For a non-trivial SO(3) bundle, .I.L-’ (0) is smooth and acted on 
freely by G, so we can apply the reasoning of section 2.4. For E + 0, the 
function Z(E) should be the sum of a polynomial in E of degree at most 
dimM/4, plus exponentially small contributions of unstable critical points. 
Looking back to (4.38), where we determined the values of the square of 
the moment map at the unstable critical points, the mth critical point should 
make a contribution proportional for small E to exp{- [27c On + l/2) lz/c’}, 
up to a power of E. These are precisely the exponents on the right hand side 
of (4.48). [Integrating g - 1 times with respect to E to recover Z(E) from 
(4.48) will not change these exponents.] 

Formula (4.48) shows that dg-*Z/tle’g-’ is a constant up to exponentially 
small terms, and hence 2 (E ) is a polynomial of degree g- 1 up to exponentially 
small terms. The terms of order E , ’ k < g - 2, that have been annihilated 
by differentiating g - 1 times with respect to E’ are most easily computed by 
expanding (4.44) in powers of c: 

g-2 (--7C2E)k (1 _ 23-‘g+‘“)c(2g _ 2 _ 2k) + O(@-1) 
(4.49) 

Using Euler’s formula expressing (;(2n ) for positive integral n in terms of 
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the Bernoulli number Bin, 

C(2n) = (2n)‘“(-l)“+‘Bzn 
2(2n)! ’ 

formula (4.49) implies 

349 

(4.50) 

J ‘-I $ (22g-2-Zk - 2)BZg-2-Zk 
exp(w+e@) = (-l)g+tC_ 

k=O k! 23g-’ (2g - 2 - 2k)! * 
(4.51) 

M’(-1) 

[We have also used (4.48) and Bo = 1 to get the term of order eg-I.] This 
agrees with the final eq. (29) of ref. [27] provided one notes that the relation 
between Thaddeus’s classes and ours is (Y = 2~0, /I = 48, and that his N, 
(which is the moduli space of flat SU(2) connections on a once-punctured 
surface with monodromy - 1 around the puncture) is an unramified Z’g-fold 
cover of our M’ (- 1) (which is the moduli space of flat SO (3) connections 
on a non-trivial bundle). 

In particular, (4.5 1) is a polynomial in E -of degree g - 1, while on dimen- 
sional grounds it might have been of degree dim(M) /4 = z (g - 1). The fact 
that the higher coefficients of the polynomial vanish is a reflection of the fact 
that pt (M)g = 0 (a conjecture of Gieseker proved by Ku-wan [28]). 

Formula (4.5 1) is not yet a complete answer for the intersection pairings 
on M’ (- 1). It is necessary also to include certain non-algebraic cycles; we do 
this in section 4.5. 

4.3.2. Analogous formulasfbr SU(2). Now we consider the case of gauge group 
SU(2). We start with 

ag-‘Z(C,E) (-l)g 53 
do-1 = (8$)g-, n=, exp(-En’/4) c 

(-IF- = 2. (&‘)g-1 -1 + Cexp(-tn’/4) (4.52) 
nG! 

Use of the Poisson summation formula now gives 

ag-lz 
m= (-l)’ (-1 + Ezexp [-(27rm)‘/r]). 

2. (8a’)g-’ 
(4.53) 

The exponents of the exponentially small terms in (4.53) are in agreement 
with our expectations from (4.36). The novelty, compared to our discussion 
of SO(3), is that the term on the right hand side of (4.53) with m = 0 does 
not vanish exponentially for small E. As a result, the (g - 1 )th derivative of Z 
is not a constant for small E, but proportional to E-I/~. The general structure 
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is thus 
g-2 

Z(E) = c akek + ag-jpcg-3i2 + exponentially small terms. (4.54) 
kc0 

The coefficients in this expansion can easily be worked out as in (4.49). 
As always, the terms in (4.54) that do not vanish exponentially must be 

interpreted as the contribution of p-t (0) to the localization formula. The non- 
analyticity of the contribution of q1 (0) reflects the fact that, for gauge group 
SU(2), ,u-’ (0) is singular. By studying the predictions of the localization 
theory when ,u”-’ (0) is singular, it should be possible to interpret the exponent 
g - 3/2 of the singular term in terms of the singularities of the moduli space 
M of flat SU(2) connections. 

For non-trivial SO(3) bundles, the contribution of ,K’ (0) to Z(E) is a 
polynomial, whose coefficients are elementary multiples of JM, W3g-3-2r@r. 
In the SU(2) case, such an interpretation cannot hold as the contribution of 
p-’ (0) is not a polynomial. In some instances, Donaldson has shown that 
intersection pairings (on singular four dimensional moduli spaces) analogous 
to Jo 3g-3-2r@r are well defined only for small enough r. Our considerations 
here perhaps give a new framework for this phenomenon: the function Z (E ) 
is defined in any case, but the extent to which it has an asymptotic expansion 
in integral powers of e and the interpretation of the coefficients as intersection 
pairings depend on details of the classical geometry of the moduli space. 

4.4. GENUS ZERO 

Now we are going to look more closely at the behavior of the partition 
function for the case that C is a closed Riemann surface of genus zero. We 
consider arbitrary compact, connected (but not necessarily simply connected) 
gauge group H’. The general formula for the partition function, specialized to 
genus zero, is 

Z(C,E;U) = 
1 

#al W’) 

X C(dimcy)21,(U-1)exp{-~[tC2(cy) + t]}. (4.55) 
a 

If one takes H’ to be SU(2) or SO(3), then the right hand side of (4.55) 
is essentially the derivative of a theta function, rather than the (g - 1)-fold 
integral of a theta function considered earlier. The partition function (4.55) 
can be expanded as a sum of contributions of critical points, using similar 
arguments to those we gave above for g 1 1; this is left to the reader. Our 
intention here is to analyze closely the contribution of ,u-’ (0). We will do this 
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without restriction on H’. We actually will only look at the leading behavior for 
e + 0, so we can set t = 0. (This is fortunate as we have not yet determined t 
for general H’.) The representation of 2 that we will use appears in the work 
of Fine [8] and Forman [12]. 

Actually, p-l (0) is empty in genus zero unless u = 1, since a flat connection 
on a two sphere with one point deleted cannot have a non-trivial monodromy 
around the puncture. So (4.55) should vanish exponentially except for u = 1. 
We will verify this presently. 

Let Fun(H) be the space of functions on the H manifold, regarded as an 
HL x HR module (with HL x HR being two copies of H, acting on H by 
h + ahb-’ ). The decomposition of Fun(H) in irreducible HL x HR modules 
is (by the Peter-Weyl theorem) 

Fun(H) 2 $CY@E, (4.56) 
a 

where the sum runs over isomorphism classes of irreducible HL modules (Y, 
and E is the complex conjugate HR module.. 

We recall that we defined the quadratic Casimir operator Cz by Cz = 
- C, T,2, where T, runs over a basis of ‘H orthonormal with respect to a 
certain invariant metric. The same metric determines a Laplace operator A 
on H. Since o and E have the same value of C2, it follows from (4.56) that 
the quadratic Casimirs of HL and HR coincide as operators on Fun(H); and 
moreover, both are equal to A. 

If, therefore, u is in the center of H and T(u-* ) is the operator of left 
multiplication by u-* E H, then using the Peter-Weyl theorem, 

Trrun(H) T(u-‘) exp (-ied) = x(dimcy)2A,(U-‘) exp [-$eCz(a)] . 
(I 

(4.57) 
We have used the fact that A acts on the representation QI as C2 (Q). The right 
hand side is, up to an elementary constant, the desired function 2 (Z, E; u). 

We can now see the expected exponential vanishing of 2 for E + 0 with 
u f 1. The left hand side of (4.57) is essentially a matrix element of the heat 
kernel exp(-cA/2). By the general theory of the short time behavior of the 
heat kernel, it vanishes exponentially for E + 0 and any fixed u f: 1, with an 
exponent determined by the length of the shortest geodesic on H from 1 to u. 

It remains to consider the case u = 1. According to the general theory 
of the heat kernel, the left hand side of (4.57) is for u = 1 asymptotic for 
small E to Vol(H)/(27re) dim(H)l2. Using this in (4.55) [and recalling that 
Vol(H) = Vol(H’) #xi (H’) 1, we get the small-e asymptotic behavior 

(4.58) 
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4.4.1. Comparison to the localization formula. Now we compare to the local- 
ization formula. As always, ,K’ (0) consists of flat connections. In genus zero, 
every flat connection is gauge equivalent to the trivial connection. The group 
G’ of gauge transformations does not act freely on the space of flat connections; 
the trivial connection, for instance, is invariant under the finite dimensional 
group H’ of constant gauge transformations, and every flat connection has a 
stabilizer isomorphic to this. So pm1 (0) is a copy of G//H’. A neighborhood of 
p-t (0) in the space A of connections can therefore be modeled on T* (G’/H’). 
[By using the relation of connections and complex structures, one can even 
- after picking a complex structure on C - identify a dense open set in A 
with T*(G’/H’).] Therefore, the problem of identifying the contribution of 
p-i (0) to .% is an infinite dimensional version of the problem that was solved 
in finite dimensions in eq. (2.42). 

Two dimensional Yang-Mills theory is equivariant integration over A of 
exp @I), where g = w + i C, 4”~~ is the equivariant extension of the sym- 
plectic form w introduced in eq. ( 1.8). Thus the form CY of eq. (2.42) can 
be identified with exp(ZJ). Since o restricts to zero on p”-’ (0), and the same 
is of course also true of ,u, the reduced form Q’ of eq. (2.42) is 1. Therefore 
(2.42) identifies the contribution of ,u-’ (0) to the functional integral as 

1 J Wl * * * @‘dim H’ 
Vol(H’) (2K)dimH’ exp & Tr 4?) . (4.59) 

[The factor of 8a2 is inherited from the definition of the Yang-Mills La- 
grangian in (4.30).] Upon performing explicitly the Gaussian integral’ in 
(4.59), we recover the asymptotic expression of (4.58), as desired. 

4.5. PAIRINGS OF NON-ALGEBRAIC CYCLES FOR SO(3) 

The cohomology of the smooth SO( 3) moduli space M’ (- 1) is known 
[26,24] to be generated by the classes w and 8, whose intersection pairings 
have been determined in eq. (4.5 1) above, along with certain non-algebraic 
cycles, which we will now incorporate. 

The basic formula that we will use is eq. (3.41) from section 3.2: 

1 w JTr(i$F+ $WAW) + & JdpTrb2 (4.60) 
z z 
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We recall that ( )’ coincides with integration over moduli space, up to terms 
that vanish exponentially for e -+ 0. 

Note that w is a free field, with a Gaussian measure, and the “trivial” 
propagator 

(vf(X)wjb(y)) = -4K2EijCSabJ2(X--y). (4.61) 

This will make life easy. 
The new cycles that we must incorporate have the following description, 

from section 3.3. For every circle C c C there is a quantum field operator 

1 
VC=G ‘My/. J 

C 

It represents a three dimensional class on moduli space; this class depends 
only on the homology class of C. As the algebraic cycles are even dimensional, 
non-zero intersection pairings are possible only with an even number of the 
VC’S. The first case is (exp(o + E@ ) . Vi-, VcJ’, with two oriented circles Ci, 
C2 that we can suppose to intersect transversely in finitely many points. So 
we consider 

1 
xexp 4K2 ( J Tr(iW + ~YAY) + $ JdpTra2 

.r .z 
x & J Tr+v& J TvW. Cl C2 (4.63) 

Upon performing the t,u integral, using (4.6 1 ), we see that this is equivalent 
to 

1 
vol(G) J DADy/Dq5 exp -& JTr(i+F + ;wAw) + $ JdpTrqt2 

z z 

X 
c 

PGnC2 

sTr4’(P). 

(4.64) 
Here P runs over all intersection points of Ct and C2, and o(P) = f 1 is 
the oriented intersection number of Ci and C2 at P. Since the cohomology 
class of Tr 42 (P) is independent of P, and equal to that of JZ dp Tr $2, (4.64) 
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(4.65 1 

with #(C, n C2) = CP u (P) the algebraic intersection number of Ci and Cl. 
Formula (4.65) is equivalent to 

(exp(o + ~6) . Vc, I+-)’ = -2#(Ci rl C2)$exp(o + e@))‘, (4.66) 

which interpreted in terms of intersection numbers gives in particular 

J exp(o+fzO)~VC,Vcz = -2#(CinCz)& J exp(o+ ee). (4.67) 

A&(-l) M’(-1) 

Of course, the right hand side is known from (4.5 1). 
The generalization to an arbitrary number of V’s is almost immediate. 

Consider oriented circles C,, o = 1,. . . , 2g, representing a basis of Hi (C, Z) . 
L&-t YOT = #(C, n C,) be the matrix of intersection numbers. Introduce 
anticommuting parameters qa, cr = 1,. . . ,2n. I claim 

J ( 

2g 
exp w+~@ +Cq,J& = 

) 
J 

exp (0 + i@) , (4.68) 
M’(-I) UC1 M’(-I) 

with 
\ 

E^=E-2 c %rtl7YOf. (4.69) 
U<f 

The computation leading to this formula is a minor variant of the one we 
have just done. The left hand side of (4.68) is equal (up to terms that vanish 
exponentially for E 4 0) to 

1 
vol(G) J 

DADy/Dcj exp & /Tr(W + $Aw) 
z 
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Shifting v to complete the square, this becomes 

1 
vol(G) I DAD04 w L/Tr(iW + $w*v) + $Jd,uTrm2 4n2 . 

.r ,?I 
(4.71) 

The polynomial part of this is the right hand side of (4.68). 
The method of eliminating the non-algebraic cycles that we have just de- 

scribed is somewhat analogous to proposition 26 of ref. [27]. Our formulas 
(4.67) and (4.68) are equivalent to the formula given by Thaddeus in propo- 
sition 26, module the evaluation (4.5 1) of intersection numbers of algebraic 
cycles and the fact that our Vc is the same as Thaddeus’s WC. 

4.6. CASIMIR OPERATORS FOR ARBITRARY LIE GROUPS 

Let & = $/4n2, and let Q (&) be an invariant polynomial in (6, homogeneous 
of degree t. Q should correspond to an operator Q in two-dimensional quantum 
Yang-Mills theory, and in (4.9) we showed that, with a particular definition 
of the quantum theory, this is just the Casimir operator Q(-ir). 

In general, the passage from classical to quantum mechanics is uniquely 
determined only up to a renormalization of the various operators and parame- 
ters. In a theory which is as strongly ultraviolet convergent as two dimensional 
Yang-Mills theory, the only ambiguity is “normal orde$ng”; different ways 
of defining the quantum operator corresponding to Q (4) will differ only by 
terms that can be considered to come from the addition to Q of invariant 
polynomials of lower degree. Thus, in general, with an arbitrary method of 
defining the theory, Q = Q (-iT) + lower order Casimir operators. 

In principle, the topological regularization of section 3 should uniquely de- 
termine the normal ordering recipe; I will leave this as an interesting open 
problem. But part of the story is easy to discern. The topological regulariza- 
tion certainly preserves eq. (3X), so we should restrict ourselves to normal 
ordering prescriptions compatible with this. ‘g This means simply that Q + Q 
must be a ring homomorphism from invariant polynomials on the Lie algebra 
to quantum operators. Thus, it is sufficient to determine Q with Q ranging 
over a set of generators of the ring of invariant polynomials. 

For instance, for SU (2), this-ring is a polynomial ring with one generztor, 
which we can take to be Q(4) = Tr J2. In this case, (4.9) gives Q = 
- C, Tr T,' = C2, while a lower order Casimir operator would have to be a 
constant. This one constant is the only normal ordering ambiguity for SU (2). 
It was called t in eq. (4.40). Ideally, t should be determined by an a priori 

w The extension of the formalism to incorporate (3.59), (3.60) will be explained in section 5. 
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calculation using a regularization in which the relation of section 3 between 
the physical and topological theories is valid. We did so more pragmatically at 
the beginning of section 4.3 to ensure a particular consequence of this relation 
(certain functions should be polynomials). 

In general, for a compact Lie group H of rank r, the ring of invariant 
polynomials is a polynomial ring in r generators (see ref. [46], 5 126). For 
any given H, there are therefore finitely many analogs of the normal ordering 
constant t. We will now state a generalization of the prescription t = l/4 to 
arbitrary Lie groups and arbitrary Casimirs. 

First we give a convenient restatement of the situation for SU(2). Let us 
call w the highest weight of the two dimensional representation of SU(2). The 
highest weight of the n dimensional representation cr,, is then h = (n - 1 )v. 
One half the sum of the positive roots of SU(2) is 6 = V, so h + 6 = nv. The 
generator Q = Tr$* of the ring of invariants corresponds, if t = l/4, to the 
quantum operator Q (an ) = n2/2. Since the Weyl group of SU(2) is Z/22, 
acting by v -+ -21, this can be described as follows: for a representation of 
highest weight h, Q is a homogeneous, Weyl invariant polynomial in h + 6, 
which agrees with the usual quadratic Casimir Q( -iT) up to terms of lower 
order. 

This formulation can be immediately generalized. Let Q (4) be any homo- 
geneous invariant polynomial of degree n on the Lie algebra of a compact 
simple Lie group H. According to ref. [46], $126, theorem 7, the correspond- 
ing Casimir Q(-iT) is equal, on an irreducible representation cr~/~ of highest 
weight h, to Q’ (h + 6)) where Q’ is a Weyl invariant polynomial of degree n. 
Moreover Q’ (h + 6) = Q (h + 6) + . . ., where the “. . .” are lower order Weyl 
invariant polynomials, which coincide, by essentially the same theorem, with 
some Casimirs of lower order. Since the ability to add such terms is precisely 
the normal ordering ambiguity, we can pick a normal ordering recipe in which, 
acting on ah, 

0 = Q(h + 6). (4.72) 

For the time being, this is an arbitrary ansatz. However, this choice will enter 
at the end of section 5 in verifying consequences of the relation of section 3 
between the physical and topological theories. 

4.61. Generalization of the path integral. We now want to evaluate the fol- 
lowing generalization of the conventional Yang-Mills path integral (4.31): 

(4.73) 

with Q (&) an arbitrary invariant polynomial on X (with some positivity 
properties to ensure convergence of the integral, or with the higher than 
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quadratic terms in Q having nilpotent coefficients to avoid such questions). 
The path integral can be evaluated by summing over the same physical states 
as before. The only novelty is that the Hamiltonian is different: it is now 
H = -G. With our normal ordering recipe, the generalization of (4.42) is 
then 

(4.74) 
Here h runs over dominant weights of H [which are in one-to-one correspon- 
dence, of course, with isomorphism classes of irreducible H modules Q: (h ) 1, 
d(h) is the dimension of a(h), and A,, = la(h). 

5. The intersection ring of the moduli space 

In section 4, we computed the intersection pairings on the moduli space of 
flat SO (3 ) connections on a non-trivial bundle over a surface of genus 2 2. 
We now want to extend this computation to other groups. We consider an 
arbitrary compact connected gauge group H’, with simply connected cover H. 
We work on an arbitrary H/-bundle E’(U) over a closed oriented surface C 
of genus g. We will evaluate the quantum field theory partition function in 
general, and then interpret it in terms of intersection pairings for the smooth 
cases. 

The basic formula that we will use is our friend (3.41): 

In (5.1)) j? is supposed to be an equivariant differential form with a polynomial 
dependence on 4. 

Since exponentials will be much more convenient than polynomials, we will 
resort to the following device. We introduce bosonic and fermionic variables 
6i which are nilpotent with $‘I = 0 for some unspecified ni if Si is bosonic 
(or ni = 2 if 6i is fermionic). We call such variables formal variables. We 
write /? = exp ( xi 6ibi), where the pi have only a polynomial dependence on 
C$ and the 6i are formal variables. Obviously, it is sufficient to study (5.1) for 
such /3’s. Taking the limit of ni + 00 (for all i such that 6i is bosonic), j? 
becomes a formal power series. 

The localization principle can be applied to (5.1) with such p, since, for 
any ni, /I is polynomial in 4. After performing the integral in (5.1), we get a 
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function g (Si ) of the formal variables which is, of course, a polynomial for 
any given ni and becomes a formal power series for ni + 00. Under certain 
conditions, the localization theorem implies (and we will verify later) that 
these formal power series are really polynomials. 

Let us recall from section 3.3 what are the possible pi. For any invariant 
polynomial Q on ti of degree r, we have equivariant differential forms 

Q (0) = J dpQ(4)> (5.2) 
Jr 

of degree 2r and 2r - 2. Also, for any circle C c C, we have the form of 
degree 2r - 1 

Q(I)(C) = - J g+ (5.4) 
a 

C 

Now, let Q(d) be an invariant polynomial of the form 

Q(4) = &Td2 + Chqi(4), 
i 

where the Si are formal variables, and the qi (4) are homogeneous of degree 
2 3. 

Let T( 4) be an invariant polynomial of the form 

T(4) = &Tr$2 + Ca;ti($), 
i 

with the 8: formal variables and ti (4) homogeneous of degree 2 3. 
Let cp c c, p = l,..., 2g, be oriented circles generating HI (2, E), with 

intersection pairings yor = #(C,, n C, ) . For each p, pick an invariant polyno- 
mial 

SP(4) = c$y, (5.7) 

where the S: are invariant homogeneous polynomials and the $ are anticom- 
muting (and so in particular nilpotent) parameters. 

We aim to compute 

)) 

I 
Q(2) + T(o) f ~S~II(CP) - 

P 
(5.8) 

(5.9) 

It is convenient to introduce 

$a = 4n2 aQ/a$“. 
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We will first evaluate (5.8) under the restriction 

det (a@/a#‘) = 1. (5.10) 

Modulo the elementary identities noted at the end of section 3, there actually 
is no loss of information in evaluating (5.8 ) only for Q such that (5.10) holds. 
However, in any event, after carrying out the calculation assuming (5. lo), we 
will then relax this requirement and consider the general case. 

The computation. The basic formula (5.1) equates (5.8) with the following 
path integral: 

1 
- 
vol( G’) J 

DA Dy/ DC#J exp iaQ.a + ~ a2Q 
a@ 2jjp@CUAWb 

asu - ayva + (5.11) 

First we carry out the integral over y/. Because of (5. lo), the v/ determinant 
coincides with what it would be if Q = Tr42/8a2. As we have discussed in 
connection with (3.45), this determinant just produces the standard symplectic 
measure on the space A of connections; this measure we conventionally (but 
somewhat inconsistently) call DA. Let (a2Q)-’ be the inverse matrix to the 
matrix a2Q/a4aa~b, and let 

(5.12) 

The second term arises, as in the derivation of (4.65), in shifting I// to complete 
the square in (5.11). Then integrating out y/ gives 

(5.13) 

Now change variables from C#I to 4, defined in (5.9). The Jacobian for this 
change of variables is 1 because of (5.10). Because the 6i are nilpotent, the 
tran+rmation is invertible; the inverse is given by some functions 9” = 
Wa (4). After the change of variables, (5.13 ) becomes 

1 
Vol(G’) J DAD4 ew 

- ( 
i/Tr&F + /dp?o W(4) 4a2 (5.14) 

t z 
This is a path integral of the type that we evaluated in eq. (4.74). 

We observed in section 4 that in canonical quantization, @/47r2 is identified 
with the group generator -iT O. To avoid repeated factors of 4a2, define an 
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invariant function V by W (3) = V ( J/47r2 ) . The invariant function PO W ( I$) 
corresponds in the quantum theory (using the normal ordering prescription 
of section 4.6) to the operator that on a representation of highest weight h 
is equal to ? o V (h + 6), with 6 equal to half the sum of the positive roots. 
Borrowing the result of (4.74), the explicit evaluation of (5.14) gives 

&f/) (~)EL, ( > 

zg-2 

F 
&(u-‘)exp[?o V(h + S)] 

d(h)2g-2 3 (5.15) 

with h running over dominant weights and 6 as above. 
Now we want to relax the assumption of (5.10). We will do so somewhat 

informally, but the result could be justified using the regularization of section 
3. 

The restriction (5.10) was used twice. The determinant in the I// integral 
would be formally, if (5.10) is not assumed, 

n det (a2g/aqa4b), 
XEZ 

(5.16) 

times the determinant for Q = Tr$2/8a2. We have set Q’ = 47r2Q. The 
factors in (5.16) are all equal up to coboundaries [since more generally, for 
any invariant function U on 7-f, U (4 (P) ) is cohomologous to U ($(P’ ) ), 
for P, P' E Z:, according to eq. (3.49)]. Of course, this infinite product of 
essentially equal factors diverges unless (5.10) is assumed. The Jacobian in 
the changes of variables from 4 to 4 is formally 

(5.1.7) 

Formally, these two factors appear to cancel, but this cancellation should be 
taken to mean only that the result is finite, not that it equals one. The number 
of factors in (5.16) should be interpreted as Nr/2, half the dimension of the 
space of one-forms. The number of factors in (5.17) should be interpreted as 
No, the dimension of the space of zero-forms. The difference Nt /~-NO = - l/2 
the Euler characteristic of C, or g - 1. Thus the product of (5.16) and 
(5.17) should be interpreted as det (a2Q’/a@asb) g-r. A convenient function 
cohomologous to this is exp&(g - 1) Indet(d2Q’/a+aa4b)]. *to 

The sole result of relaxing (5. IO) is accordingly that (5.14) becomes 

1 
Vol(G’) J DAD4 ew 

- ( 
i/Tr&F + /dp To W(J) 4a2 (5.18) 

z z 

*lo In a calculation using the regularization of section 3, this factor would arise 
from the one loop chiral anomaly. It would appear in the form of a factor 
exp[-J=dp (R/8n)Indet(a2Q’/a~ua~b)], with R the scalar curvature of the metric that 
enters in the cohomological Lagrangians of section 3. 
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with 

=T-&$$ (a2Q);t + (g - 1) Indet (5.19) 
l7<T 

The evaluation of the path integral therefore leaves in general not quite (5.15) 
but 

b-2 &(u-*)exp [To Y(h + 6)] 

d(h)2g-’ 
(5.20) 

The topological conclusion. For E > 0 and the other parameters nilpotent, the 
path integral can be evaluated as we have just done regardless of possible 
singularities of the moduli space M’(u) of flat connections on E’(u). If H’, 
u, and C are such that the space of flat connections is smooth, and the gauge 
group acts freely on it (at least modulo its center), then according to the 
theory of section 2, (5.20) is a polynomial in E and the formal variables, 
modulo terms that vanish exponentially for E -, 0. Moreover, this polynomial 
then has an interpretation in terms of intersection numbers on moduli space: 

Q(2) + c D 
#Z (H’ ) Vol (H’ ) 

> 

b-2 

c 
&(tr’) exp [To V(h + a)] 

= #n, (H’) (27r)dim(H’) d(h)2g-’ + *.., 
h 

(5.21) 
where “. . .” are exponentially small terms. [#Z (H’ ), the order of the iso- 
morphism group of a generic connection, is the usual factor relating the path 
integral to the intersection theory.] This formula generalizes the computations 
we made in section 4 for the case of H = W(2), H’ = SO(3), u = -1. It 
applies notably for H = SU (N), with center r 2 E/NZ, H’ = SU (N)/T, 
and u a generator of r. 

Even when H’, u, and C are such that the space of flat connections is not 
smooth (or the gauge group does not act freely on it), certain intersection 
pairings on M’(u) are well defined topologically. A more careful study of the 
contribution of p-i (0) to the localization formula will probably show that 
these are all given by the asymptotic expansion of (5.2 1). 

An important check is that (5.2 1) is compatible with the general topological 
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relations of eqs. (3.58)-(3.60). To write out these relations, let us abbreviate 

Z(T,S”,Q) = 
J ( 

ew Q(2) + ~St)(G) + T(O) . 

) 

(5.22) 
M’(u) u 

Then (3.58) amounts to the statement that for any invariant polynomials A, B 

;Z(T + EAB,S’,Q) 
a2 

= -Z(T+aA+j3B,Sa,Q) . 
c=o hap a=/!?=0 

(5.23) 
This is easily verified. Formula (3.59) amounts to the statement that for any 
A and B and any r 

;Z(T,s’ + &‘eAB, Q) 
EZO 

-Z(T+crA,S”+&‘PB,Q)+AwB (5.24) 

Here CY is commuting and p, E are anticommuting. This is also easy to verify. 
The last relation (3.60) amounts to 

$V,S”,Q + EAB) 
c=o 

+ &%‘A + 6,OP’B, Q)jo,=pt=o. (5.25) 

(Here cr’ and /3’ are anticommuting.) The verification is straightforward but a 
little longer. It is only here that the “anomaly” term - involving the determinant 
of a2Q’/a42 - plays a role. 

Polynomials. Now we want to verify that, under the expected hypotheses, the 
formal power series on the right hand side of (5.2 1) is a polynomial in E and 
the formal variables, modulo exponentially small terms. (A sharper bound 
than we will obtain on the degree of these polynomials is expected.) 

The basic fact that we will use is that for w real and non-integral, P an 
arbitrary polynomial, and a real, 

Cexp [-c(n2 + an) + Zniwn] . P(n) 
na 

(5.26) 

vanishes exponentially for E + 0. This can be proved, for instance, by Poisson 
summation, as in the derivation of (4.47). There is also an obvious higher 
dimensional generalization of (5.26). Replace Z by a lattice /i c W, replace 
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w n by a real valued linear form w (n ) on /i that is not integer valued, replace 
n2 by (n, n ), with ( , ) a positive definite quadratic form on R”, and replace 
an by (a, n) with a E IF!“. Then (5.26) becomes 

Cew{---E [b,n) + (a,n)l + 2niw(n)}~P(n). 
na 

(5.27) 

That this vanishes exponentially for E + 0 is proved the same way. 
Now, let n c Iw” be a lattice with an integer valued non-degenerate quadratic 

form ( , ). Let ei, i = 1 , . . . , t, be not necessarily distinct non-zero points in 
/i. Let Hi be the sublattice of/i defined by (ei, h) = 0. Let us call a sublattice 
(io c /i distinguished if it is non-zero and can be written as an intersection of 
a subset of Hi’s. Let w be a real valued linear form on /i which is not integer 
valued when restricted to any distinguished /is. Let P be a polynomial on /i 
of degree s > t. Consider the sum 

c exp [-e(h,h) + 2niw(h)]. P(h) 

he/i’ II:=, (ej,h) ’ 
(5.28) 

where /i’ = /i - UjHj. I claim this sum vanishes exponentially for E + 0. 
Obviously, we can assume that P is a monomial, and thus a product 

of linear factors PI,. . . , Ps. If the ej are linearly independent, then we can 
expand PI (h ) = Es=, cj (ej, h ) with coefficients cj. It is therefore enough 
in this case to show that (5.28) vanishes exponentially if P is replaced by 
P’ = (ek,h) a P2 a.1 Ps. The factor of (ek, h) can be canceled with one factor 
in the denominator. 

At this point, if ek no longer appears in the list of remaining e’s (recall that 
the e’s may not be distinct), we want to extend the sum in (5.28) to run over 
A” = II - Uj+.kHj. By induction on the dimension of /i, we can assume that 

c 
exp [-e(h,h) + 2niw(h)]. P(h) 

njfk(ej,h) 
(5.29) 

hCHL 

vanishes exponentially for E + 0, if HL = Hk-Ui+k (HjnHk). As fi” = /I’UHL, 
we can replace the sum over /i’ by a sum over A”. 

After repeating this process, one reduces to the following situation. The 
remaining ej, j = 1,. . . , t’ (if any), are not linearly independent, and the 
equations (ej, h ) = 0, j = 1,. . . , t’, define a non-zero lattice ni. P is a 
polynomial on this lattice, of degree S’ > t’ 2 0. By the hypothesis about w, w 
is not integer valued when restricted to n 1. The ej can be regarded as linear 
forms on a complementary lattice 4 to /it. The same Poisson summation 
used in proving (5.27), when applied to the sum over Ai, now shows that 
(5.28) vanishes exponentially for E + 0. 

To apply this to our problem, let n be the root lattice of the compact, 
connected, and simply connected Lie group H. We recall from the theory of 
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compact Lie groups that the dimension of a representation of highest weight 
h is d (h ) = ni (ei, h + 6)) where ei, i = 1,. . . , q, are the positive roots of 
H, 6 is one half their sum, and ( , ) is the usual metric on /i. To show that 
(5.21) is a polynomial in E and the formal variables modulo exponentially 
small terms, it suffices to show that 

c &(u-')exp [--E(h + c&h + 611 .P(h + 6) 
ni (et, h + 8)2g-2 

(5.30) 
/I 

vanishes exponentially for E + 0, if P (h + 6 ) is a Weyl invariant polynomial 
of degree greater than (2g - 2)q, and the sum runs over dominant weights h. 
Let Hi be the sublattice of n defined by (ei, h + 6) = 0. Changing variables 
from h to h’ = h + 6, and using the Weyl invariance of the numerator and 
denominator in (5.30), we can replace this sum by 

1 
c 

Aj,(u-*) exp [-e(h’,h’)] . P(W) 

#vf(H) h’&p ni (ei, h’)2g-2 ’ 
(5.31) 

where A’ = /i - UiHi, and W(H) is the Weyl group. 
In (5.31), &,(u-‘) can be written exp[2niw(h)], where w is some linear 

form on /i. To deduce the desired property of (5.31) from our earlier discus- 
sion, it suffices to show that w (h) is not integer valued when restricted to any 
sublattice /lo c /i defined by vanishing of a subset of the linear forms (ei, h’). 

At this point, we specialize to the case H = SU(N) and u a generator of 
the center of H. The root lattice A can conveniently be taken to consist of 
N-tuples (hr , . . . , hi ), with C, h, = 0, and h, - hb E Z. The Weyl group 
is the group of permutations of the h’s. The linear form w can be written 
as w (h) = khr , with k an integer depending on u. The hypothesis that u 
generates the center of SU(N) is equivalent to (k, N) = 1. The linear forms 
(ei, h ) are h, - hh, 1 5 (Y < /I 5 N. Any distinguished sublattice /ic defined 
by equations h,, - ha, = 0, Y = 1,. . . , m, contains a sublattice /‘t, equivalent 
(up to a Weyl transformation) to hr = .. . = hm, hm+r = 1.. = hi, with 
0 < m < N. This lattice contains the point hi = . . . = h, = (N - m )/N, 
h In+1 = . . . = hN = -m/N. If (k, N) = 1, then w is not an integer at this 
point, completing the proof. 

This argument shows that (5.21) is a polynomial in E and the formal 
variables in the expected cases, but [except in the special case S’ = 0, 
Q(4) = Tr42/8a2] the bound on the degree of the polynomial so obtained is 
weaker than expected by dimension counting. It ,would be interesting to know 
how to obtain directly a sharper bound. 
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Appendix A 

This appendix is devoted to a simple illustration of the various localization 
formulas. We will consider a situation with G = U ( 1) so that we can illustrate 
both the abelian DH formula and the new not necessarily abelian formula. 
(However, in the abelian case, the “new” formula is a consequence of the DH 
formula.) We endow the Lie algebra of G with the standard metric such that 
the volume of the group is 271. 

Let X be the two-sphere 

x2 + y2 + z2 = 1 64.1) 
and introduce the usual polar coordinates by z = cos8, x = sin8 cos v/, 
y = sin 0 sin w. Thus 0 5 0 5 n and 0 5 t,u 5 271. The usual symplectic volume 
form is o = d cos 8 dy/. We consider the U ( 1) action w + v/ + constant. The 
moment map is 

p = case + a, (A.21 
where a is an arbitrary constant. The DH formula therefore applies to 

2 = ” e-p(cose+a)~ 
J (A.3) 

Evaluating this explicitly, we have 

The two terms can be identified with the contributions from the critical points 
P* of p at cos 8 = f 1. The factors of e-‘?(a*‘) are e-PP(P*), while the one 
loop determinants expanding around the Pk give ~2n/j?. A minus sign arises 
at P+ because it is a local maximum of p, unstable in two directions, each of 
which, heuristically, contributes a factor of i. 

Now we want to illustrate the localization formula used in this paper. In so 
doing, we will assume la1 < 1, leaving the other (similar) cases to the reader. 
Using the formalism of section 2, we consider the equivariantly closed form 

ff = exp(o + i&u), (A.51 
where 4 is a linear function on the one dimensional Lie algebra of G. Then 

f 
O” d4 

(y = vol(U(1)) 
’ J z-exp[w+i~(cosB+a)-+$2]. (‘4.6) 

X -m X 

Integrating over w and 4 and setting x = cos 0, and vol (U ( 1) ) = 272, we get 
1 

f J CY= t2nf$,2 ew [4x + d2/24. 
X -I 

(‘4.7) 
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The integral would be 1 if the limits were extended from --oo to +oo. As it is, 

(A.81 

with co 

I+ = J (2r$,,2 exp [4x + d2/4, 
I 

-1 

I- = J c2nyl ,,2 exp [-(x + d2P] . (A.91 
-Kl 

The three terms correspond to the expected contributions from the critical 
points of I = (p,~). The absolute minimum of I at cos 8 = -a can be locally 
modeled on T’G and hence contributes + 1, as predicted from our general 
analysis in section 2.3. The other critical points of I are the critical points 
P* of ,U that already entered above. Their contributions are -I*, which are 
transcendental (error) functions. The minus signs reflect the fact that the two 
points P+ are both local maxima of I. The contributions of P* are asymptotic 
for E + 0 to exp [ -Z (P* )/2e 1, in agreement with the general theory. The 
complicated error functions contrast with the elementary functions that appear 
as local contributions in the DH formula. They arise because, although P+ 
are non-degenerate critical points of I, they are degenerate critical points of 
the function ( V, n)2 that appears in the key formula (2.12). By examining 
(2.12)) one can make quite explicit the fact that the error functions are entirely 
determined by the behavior of ,U near P* up to second order. 

S. Axelrod made prescient comments several years ago about two dimen- 
sional Yang-Mills theory. I also want to thank V. Guillemin, C. Vafa, and L. 
Jeffrey for helpful comments. 
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